These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33348887)
1. Exposure to Ultrafine Particles in the Ferroalloy Industry Using a Logbook Method. Jørgensen RB; Kero IT; Blom A; Grove EE; Svendsen KVH Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33348887 [TBL] [Abstract][Full Text] [Related]
2. Workplace Measurements of Ultrafine Particles-A Literature Review. Viitanen AK; Uuksulainen S; Koivisto AJ; Hämeri K; Kauppinen T Ann Work Expo Health; 2017 Aug; 61(7):749-758. PubMed ID: 28810681 [TBL] [Abstract][Full Text] [Related]
3. Exposure characterization and risk assessment of ultrafine particles from the blast furnace process in a steelmaking plant. Gao X; Zhou X; Zou H; Wang Q; Zhou Z; Chen R; Yuan W; Luan Y; Quan C; Zhang M J Occup Health; 2021 Jan; 63(1):e12257. PubMed ID: 34375492 [TBL] [Abstract][Full Text] [Related]
4. Characterization of particle exposure in ferrochromium and stainless steel production. Järvelä M; Huvinen M; Viitanen AK; Kanerva T; Vanhala E; Uitti J; Koivisto AJ; Junttila S; Luukkonen R; Tuomi T J Occup Environ Hyg; 2016 Jul; 13(7):558-68. PubMed ID: 26950803 [TBL] [Abstract][Full Text] [Related]
5. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Brouwer DH; Gijsbers JH; Lurvink MW Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340 [TBL] [Abstract][Full Text] [Related]
6. Real-Time Measurements and Characterization of Airborne Particulate Matter from a Primary Silicon Carbide Production Plant. Jørgensen RB; Kero IT Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29261158 [TBL] [Abstract][Full Text] [Related]
7. Passive personal air sampling of dust in a working environment-A pilot study. Shirdel M; Bergdahl IA; Andersson BM; Wingfors H; Sommar JN; Liljelind IE J Occup Environ Hyg; 2019 Oct; 16(10):675-684. PubMed ID: 31442106 [TBL] [Abstract][Full Text] [Related]
8. Seasonal assessment of environmental tobacco smoke and respirable suspended particle exposures for nonsmokers in Bremen using personal monitoring. Phillips K; Bentley MC Environ Int; 2001 Jul; 27(1):69-85. PubMed ID: 11488392 [TBL] [Abstract][Full Text] [Related]
9. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
10. A field application of a personal sensor for ultrafine particle exposure in children. Ryan PH; Son SY; Wolfe C; Lockey J; Brokamp C; LeMasters G Sci Total Environ; 2015 Mar; 508():366-73. PubMed ID: 25497676 [TBL] [Abstract][Full Text] [Related]
11. Peritonectomy with high voltage electrocautery generates higher levels of ultrafine smoke particles. Andréasson SN; Anundi H; Sahlberg B; Ericsson CG; Wålinder R; Enlund G; Påhlman L; Mahteme H Eur J Surg Oncol; 2009 Jul; 35(7):780-4. PubMed ID: 18922668 [TBL] [Abstract][Full Text] [Related]
12. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Jørgensen RB; Buhagen M; Føreland S Occup Environ Med; 2016 Jul; 73(7):467-73. PubMed ID: 27016529 [TBL] [Abstract][Full Text] [Related]
13. Differential pattern of deposition of nanoparticles in the airways of exposed workers. Fireman E; Edelheit R; Stark M; Shai AB J Nanopart Res; 2017; 19(2):30. PubMed ID: 28163602 [TBL] [Abstract][Full Text] [Related]
14. Total and respirable dust exposures among carpenters and demolition workers during indoor work in Denmark. Kirkeskov L; Hanskov DJ; Brauer C J Occup Med Toxicol; 2016; 11():45. PubMed ID: 27660643 [TBL] [Abstract][Full Text] [Related]
15. Occupational exposure to ultrafine particles among airport employees--combining personal monitoring and global positioning system. Møller KL; Thygesen LC; Schipperijn J; Loft S; Bonde JP; Mikkelsen S; Brauer C PLoS One; 2014; 9(9):e106671. PubMed ID: 25203510 [TBL] [Abstract][Full Text] [Related]
16. Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses. Fonseca J; Slezakova K; Morais S; Pereira MC Indoor Air; 2014 Dec; 24(6):618-28. PubMed ID: 24689947 [TBL] [Abstract][Full Text] [Related]
17. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area. Klasson M; Bryngelsson IL; Pettersson C; Husby B; Arvidsson H; Westberg H Ann Occup Hyg; 2016 Jul; 60(6):684-99. PubMed ID: 27143598 [TBL] [Abstract][Full Text] [Related]
18. Comparison of four nanoparticle monitoring instruments relevant for occupational hygiene applications. Jørgensen RB J Occup Med Toxicol; 2019; 14():28. PubMed ID: 31798666 [TBL] [Abstract][Full Text] [Related]
19. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
20. Indoor ultrafine particle exposures and home heating systems: a cross-sectional survey of Canadian homes during the winter months. Weichenthal S; Dufresne A; Infante-Rivard C; Joseph L J Expo Sci Environ Epidemiol; 2007 May; 17(3):288-97. PubMed ID: 17033678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]