BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33348977)

  • 1. Ruthenium-Assisted Chemical Etching of Silicon: Enabling CMOS-Compatible 3D Semiconductor Device Nanofabrication.
    Mallavarapu A; Ajay P; Barrera C; Sreenivasan SV
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1169-1177. PubMed ID: 33348977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CMOS-Compatible Catalyst for MacEtch: Titanium Nitride-Assisted Chemical Etching in Vapor phase for High Aspect Ratio Silicon Nanostructures.
    Kim JD; Kim M; Chan C; Draeger N; Coleman JJ; Li X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27371-27377. PubMed ID: 31265223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon.
    Kim JD; Kim M; Kong L; Mohseni PK; Ranganathan S; Pachamuthu J; Chim WK; Chiam SY; Coleman JJ; Li X
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9116-9122. PubMed ID: 29406759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.
    Kong L; Song Y; Kim JD; Yu L; Wasserman D; Chim WK; Chiam SY; Li X
    ACS Nano; 2017 Oct; 11(10):10193-10205. PubMed ID: 28880533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered Al
    Wilhelm TS; Wang Z; Baboli MA; Yan J; Preble SF; Mohseni PK
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27488-27497. PubMed ID: 30079732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Suspended III-V Nanofoils by Inverse Metal-Assisted Chemical Etching of In
    Wilhelm TS; Soule CW; Baboli MA; O'Connell CJ; Mohseni PK
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2058-2066. PubMed ID: 29303241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask.
    Shin JC; Zhang C; Li X
    Nanotechnology; 2012 Aug; 23(30):305305. PubMed ID: 22781145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalyst preparation for CMOS-compatible silicon nanowire synthesis.
    Renard VT; Jublot M; Gergaud P; Cherns P; Rouchon D; Chabli A; Jousseaume V
    Nat Nanotechnol; 2009 Oct; 4(10):654-7. PubMed ID: 19809456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.
    Kim SH; Mohseni PK; Song Y; Ishihara T; Li X
    Nano Lett; 2015 Jan; 15(1):641-8. PubMed ID: 25521615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Aspect Ratio β-Ga
    Huang HC; Kim M; Zhan X; Chabak K; Kim JD; Kvit A; Liu D; Ma Z; Zuo JM; Li X
    ACS Nano; 2019 Aug; 13(8):8784-8792. PubMed ID: 31244033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of high aspect ratio GaAs nanostructures with metal-assisted chemical etching.
    DeJarld M; Shin JC; Chern W; Chanda D; Balasundaram K; Rogers JA; Li X
    Nano Lett; 2011 Dec; 11(12):5259-63. PubMed ID: 22049924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching.
    Sainato M; Strambini LM; Rella S; Mazzotta E; Barillaro G
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7136-45. PubMed ID: 25775204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Ultra-High Aspect Ratio (>420:1) Al
    Li H; Xie C
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabrication of X-ray Optics by Metal Assisted Chemical Etching: A Review.
    Romano L; Stampanoni M
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32545633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-assisted chemical etching beyond Si: applications to III-V compounds and wide-bandgap semiconductors.
    Znati S; Wharwood J; Tezanos KG; Li X; Mohseni PK
    Nanoscale; 2024 Jun; 16(23):10901-10946. PubMed ID: 38804075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching.
    Zhang J; Zhang L; Han L; Tian ZW; Tian ZQ; Zhan D
    Nanoscale; 2017 Jun; 9(22):7476-7482. PubMed ID: 28530294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon Nanostructures Produced by Modified MacEtch Method for Antireflective Si Surface.
    Nichkalo S; Druzhinin A; Evtukh A; Bratus' O; Steblova O
    Nanoscale Res Lett; 2017 Dec; 12(1):106. PubMed ID: 28209027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wafer-Scale Fabrication of Ultra-High Aspect Ratio, Microscale Silicon Structures with Smooth Sidewalls Using Metal Assisted Chemical Etching.
    Zhang X; Yao C; Niu J; Li H; Xie C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and low-cost prototyping of 3D nanostructures with multi-layer hydrogen silsesquioxane scaffolds.
    Varghese LT; Fan L; Wang J; Xuan Y; Qi M
    Small; 2013 Dec; 9(24):4237-42. PubMed ID: 23843278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.