These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 33349519)
21. Radiomics analysis of pre-treatment [ van Helden EJ; Vacher YJL; van Wieringen WN; van Velden FHP; Verheul HMW; Hoekstra OS; Boellaard R; Menke-van der Houven van Oordt CW Eur J Nucl Med Mol Imaging; 2018 Dec; 45(13):2307-2317. PubMed ID: 30094460 [TBL] [Abstract][Full Text] [Related]
22. The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Joye I; Deroose CM; Vandecaveye V; Haustermans K Radiother Oncol; 2014 Nov; 113(2):158-65. PubMed ID: 25483833 [TBL] [Abstract][Full Text] [Related]
23. FDG-PET/CT Radiomics Models for The Early Prediction of Locoregional Recurrence in Head and Neck Cancer. Cong H; Peng W; Tian Z; Vallières M; Chuanpei X; Aijun Z; Benxin Z Curr Med Imaging; 2021; 17(3):374-383. PubMed ID: 32652919 [TBL] [Abstract][Full Text] [Related]
24. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204 [TBL] [Abstract][Full Text] [Related]
25. Metabolic Radiomics for Pretreatment Ha S; Park S; Bang JI; Kim EK; Lee HY Sci Rep; 2017 May; 7(1):1556. PubMed ID: 28484211 [TBL] [Abstract][Full Text] [Related]
26. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
27. The potential predictive value of MRI and PET-CT in mucinous and nonmucinous rectal cancer to identify patients at high risk of metastatic disease. Barbaro B; Leccisotti L; Vecchio FM; Di Matteo M; Serra T; Salsano M; Poscia A; Coco C; Persiani R; Alfieri S; Gambacorta MA; Valentini V; Giordano A; Bonomo L Br J Radiol; 2017 Jan; 90(1069):20150836. PubMed ID: 27845566 [TBL] [Abstract][Full Text] [Related]
28. [18F] FDG Positron Emission Tomography (PET) Tumor and Penumbra Imaging Features Predict Recurrence in Non-Small Cell Lung Cancer. Mattonen SA; Davidzon GA; Bakr S; Echegaray S; Leung ANC; Vasanawala M; Horng G; Napel S; Nair VS Tomography; 2019 Mar; 5(1):145-153. PubMed ID: 30854452 [TBL] [Abstract][Full Text] [Related]
29. A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer. Song BI Breast Cancer; 2021 May; 28(3):664-671. PubMed ID: 33454875 [TBL] [Abstract][Full Text] [Related]
30. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Lovinfosse P; Polus M; Van Daele D; Martinive P; Daenen F; Hatt M; Visvikis D; Koopmansch B; Lambert F; Coimbra C; Seidel L; Albert A; Delvenne P; Hustinx R Eur J Nucl Med Mol Imaging; 2018 Mar; 45(3):365-375. PubMed ID: 29046927 [TBL] [Abstract][Full Text] [Related]
31. Diagnostic Value of (18)F-FDG PET/CT in Detecting Local Recurrent Colorectal Cancer: A Pooled Analysis of 26 Individual Studies. Yu T; Meng N; Chi D; Zhao Y; Wang K; Luo Y Cell Biochem Biophys; 2015 Jun; 72(2):443-51. PubMed ID: 25737131 [TBL] [Abstract][Full Text] [Related]
32. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Jia LL; Zheng QY; Tian JH; He DL; Zhao JX; Zhao LP; Huang G Front Oncol; 2022; 12():1026216. PubMed ID: 36313696 [TBL] [Abstract][Full Text] [Related]
33. Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review. Granzier RWY; van Nijnatten TJA; Woodruff HC; Smidt ML; Lobbes MBI Eur J Radiol; 2019 Dec; 121():108736. PubMed ID: 31734639 [TBL] [Abstract][Full Text] [Related]
34. Prospective study on diagnostic and prognostic significance of postoperative FDG PET/CT in recurrent colorectal carcinoma patients: comparison with MRI and tumor markers. Odalovic S; Stojiljkovic M; Sobic-Saranovic D; Pandurevic S; Brajkovic L; Milosevic I; Grozdic-Milojevic I; Artiko V Neoplasma; 2017; 64(6):954-961. PubMed ID: 28895416 [TBL] [Abstract][Full Text] [Related]
35. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017 [TBL] [Abstract][Full Text] [Related]
36. Diagnostic performance of [ Hong SB; Choi SH; Kim KW; Park SH; Kim SY; Lee SJ; Lee SS; Byun JH; Lee MG Eur Radiol; 2019 Jul; 29(7):3553-3563. PubMed ID: 30715585 [TBL] [Abstract][Full Text] [Related]
37. Prediction of tumor response after neoadjuvant chemoradiotherapy in rectal cancer using (18)fluorine-2-deoxy-D-glucose positron emission tomography-computed tomography and serum carcinoembryonic antigen: a prospective study. Li QW; Zheng RL; Ling YH; Wang QX; Xiao WW; Zeng ZF; Fan W; Li LR; Gao YH Abdom Radiol (NY); 2016 Aug; 41(8):1448-55. PubMed ID: 27116012 [TBL] [Abstract][Full Text] [Related]
38. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. Kalff V; Duong C; Drummond EG; Matthews JP; Hicks RJ J Nucl Med; 2006 Jan; 47(1):14-22. PubMed ID: 16391182 [TBL] [Abstract][Full Text] [Related]
39. Current status and quality of radiomic studies for predicting KRAS mutations in colorectal cancer patients: A systematic review and meta‑analysis. Jia LL; Zhao JX; Zhao LP; Tian JH; Huang G Eur J Radiol; 2023 Jan; 158():110640. PubMed ID: 36525703 [TBL] [Abstract][Full Text] [Related]
40. External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. Lucia F; Visvikis D; Vallières M; Desseroit MC; Miranda O; Robin P; Bonaffini PA; Alfieri J; Masson I; Mervoyer A; Reinhold C; Pradier O; Hatt M; Schick U Eur J Nucl Med Mol Imaging; 2019 Apr; 46(4):864-877. PubMed ID: 30535746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]