These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33349671)

  • 1. Triple ionic-electronic conducting oxides for next-generation electrochemical devices.
    Papac M; Stevanović V; Zakutayev A; O'Hayre R
    Nat Mater; 2021 Mar; 20(3):301-313. PubMed ID: 33349671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic Insights into the Triple Ionic and Electronic Conductivity of a Novel Nanocomposite Functional Material for Protonic Ceramic Fuel Cells.
    Bello IT; Yu N; Song Y; Wang J; Chan TS; Zhao S; Li Z; Dai Y; Yu J; Ni M
    Small; 2022 Oct; 18(40):e2203207. PubMed ID: 36057991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High ionic conductivity in a LiFeO2-LiAlO2 composite under H2/air fuel cell conditions.
    Lan R; Tao S
    Chemistry; 2015 Jan; 21(3):1350-8. PubMed ID: 25394201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 100th Anniversary of Macromolecular Science Viewpoint: Recent Advances and Opportunities for Mixed Ion and Charge Conducting Polymers.
    Chung J; Khot A; Savoie BM; Boudouris BW
    ACS Macro Lett; 2020 May; 9(5):646-655. PubMed ID: 35648568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides.
    Lee D; Lee HN
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.
    Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y
    Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Properties, Defect Structures, and Ionic Conducting Mechanisms in Alkali Tungstate Li
    Xu J; Xu X; Yi H; Lv Y; Xu N; He L; Chen J; Kuang X; Huang K
    Inorg Chem; 2021 Jun; 60(12):8631-8639. PubMed ID: 34077204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes.
    Perry NH; Ishihara T
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design principles for solid-state lithium superionic conductors.
    Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G
    Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for analyzing electrochemical properties of mixed conducting solid oxide fuel cell anode materials by impedance spectroscopy.
    Nenning A; Opitz AK; Huber TM; Fleig J
    Phys Chem Chem Phys; 2014 Oct; 16(40):22321-36. PubMed ID: 25219525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic and electronic energy diagrams for hybrid perovskite solar cells.
    Moia D; Maier J
    Mater Horiz; 2023 May; 10(5):1641-1650. PubMed ID: 36802280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic understanding of monovalent cation transport in eumelanin pigments.
    Tian Z; Hwang W; Kim YJ
    J Mater Chem B; 2019 Nov; 7(41):6355-6361. PubMed ID: 31465076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Something from nothing: enhancing electrochemical charge storage with cation vacancies.
    Hahn BP; Long JW; Rolison DR
    Acc Chem Res; 2013 May; 46(5):1181-91. PubMed ID: 22642490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a Triple-Conducting Heterostructure Electrolyte of Ba
    Rauf S; Zhu B; Yousaf Shah MAK; Tayyab Z; Attique S; Ali N; Mushtaq N; Wang B; Yang C; Asghar MI; Lund PD
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35071-35080. PubMed ID: 32667772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxide-ion conduction in the Dion-Jacobson phase CsBi
    Zhang W; Fujii K; Niwa E; Hagihala M; Kamiyama T; Yashima M
    Nat Commun; 2020 Mar; 11(1):1224. PubMed ID: 32144260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space charge effects in mixed ionic-electronic conducting electrodes for solid-state batteries.
    Chen SH; Chen CC
    Phys Chem Chem Phys; 2024 Sep; 26(37):24689-24698. PubMed ID: 39282755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct in situ probe of electrochemical processes in operating fuel cells.
    Nonnenmann SS; Kungas R; Vohs J; Bonnell DA
    ACS Nano; 2013 Jul; 7(7):6330-6. PubMed ID: 23782103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.