These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33349702)

  • 21. DNA Origami Nanoplate-Based Emulsion with Nanopore Function.
    Ishikawa D; Suzuki Y; Kurokawa C; Ohara M; Tsuchiya M; Morita M; Yanagisawa M; Endo M; Kawano R; Takinoue M
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15299-15303. PubMed ID: 31411794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstitution of Ultrawide DNA Origami Pores in Liposomes for Transmembrane Transport of Macromolecules.
    Fragasso A; De Franceschi N; Stömmer P; van der Sluis EO; Dietz H; Dekker C
    ACS Nano; 2021 Aug; 15(8):12768-12779. PubMed ID: 34170119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes.
    Arnott PM; Howorka S
    ACS Nano; 2019 Mar; 13(3):3334-3340. PubMed ID: 30794375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor.
    Burns JR; Göpfrich K; Wood JW; Thacker VV; Stulz E; Keyser UF; Howorka S
    Angew Chem Int Ed Engl; 2013 Nov; 52(46):12069-72. PubMed ID: 24014236
    [No Abstract]   [Full Text] [Related]  

  • 25. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.
    Göpfrich K; Zettl T; Meijering AE; Hernández-Ainsa S; Kocabey S; Liedl T; Keyser UF
    Nano Lett; 2015 May; 15(5):3134-8. PubMed ID: 25816075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular transport through large-diameter DNA nanopores.
    Krishnan S; Ziegler D; Arnaut V; Martin TG; Kapsner K; Henneberg K; Bausch AR; Dietz H; Simmel FC
    Nat Commun; 2016 Sep; 7():12787. PubMed ID: 27658960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.
    Endo M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanopore fingerprinting of supramolecular DNA nanostructures.
    Confederat S; Sandei I; Mohanan G; Wälti C; Actis P
    Biophys J; 2022 Dec; 121(24):4882-4891. PubMed ID: 35986518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane-assisted growth of DNA origami nanostructure arrays.
    Kocabey S; Kempter S; List J; Xing Y; Bae W; Schiffels D; Shih WM; Simmel FC; Liedl T
    ACS Nano; 2015; 9(4):3530-9. PubMed ID: 25734977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanopore sensors: from hybrid to abiotic systems.
    Kocer A; Tauk L; Déjardin P
    Biosens Bioelectron; 2012; 38(1):1-10. PubMed ID: 22749726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional and Biomimetic DNA Nanostructures on Lipid Membranes.
    Wu N; Chen F; Zhao Y; Yu X; Wei J; Zhao Y
    Langmuir; 2018 Dec; 34(49):14721-14730. PubMed ID: 30044097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing Biophysics Using DNA Origami.
    Engelen W; Dietz H
    Annu Rev Biophys; 2021 May; 50():469-492. PubMed ID: 33646812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA.
    Xing Y; Dorey A; Howorka S
    Adv Mater; 2023 Jul; 35(29):e2300589. PubMed ID: 37029712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of nanopores with ultrashort single-walled carbon nanotubes inserted in a lipid bilayer.
    Liu L; Xie J; Li T; Wu HC
    Nat Protoc; 2015 Nov; 10(11):1670-8. PubMed ID: 26426500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biopores/membrane proteins in synthetic polymer membranes.
    Garni M; Thamboo S; Schoenenberger CA; Palivan CG
    Biochim Biophys Acta Biomembr; 2017 Apr; 1859(4):619-638. PubMed ID: 27984019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling protein translocation through nanopores with bio-inspired fluid walls.
    Yusko EC; Johnson JM; Majd S; Prangkio P; Rollings RC; Li J; Yang J; Mayer M
    Nat Nanotechnol; 2011 Apr; 6(4):253-60. PubMed ID: 21336266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels.
    Henning-Knechtel A; Knechtel J; Magzoub M
    Nucleic Acids Res; 2017 Dec; 45(21):12057-12068. PubMed ID: 29088457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.
    Bell NA; Keyser UF
    Nat Nanotechnol; 2016 Jul; 11(7):645-51. PubMed ID: 27043197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.