These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 33349702)

  • 41. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.
    Bell NA; Keyser UF
    Nat Nanotechnol; 2016 Jul; 11(7):645-51. PubMed ID: 27043197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosensing with conically shaped nanopores and nanotubes.
    Choi Y; Baker LA; Hillebrenner H; Martin CR
    Phys Chem Chem Phys; 2006 Nov; 8(43):4976-88. PubMed ID: 17091150
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulating Lipid Membrane Morphology by Dynamic DNA Origami Networks.
    Yang J; Jahnke K; Xin L; Jing X; Zhan P; Peil A; Griffo A; Škugor M; Yang D; Fan S; Göpfrich K; Yan H; Wang P; Liu N
    Nano Lett; 2023 Jul; 23(14):6330-6336. PubMed ID: 37440701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional Nanopores Enabled with DNA.
    Xing Y; Rottensteiner A; Ciccone J; Howorka S
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202303103. PubMed ID: 37186432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface.
    Suzuki Y; Endo M; Yang Y; Sugiyama H
    J Am Chem Soc; 2014 Feb; 136(5):1714-7. PubMed ID: 24428846
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization.
    Cressiot B; Greive SJ; Si W; Pascoa TC; Mojtabavi M; Chechik M; Jenkins HT; Lu X; Zhang K; Aksimentiev A; Antson AA; Wanunu M
    ACS Nano; 2017 Dec; 11(12):11931-11945. PubMed ID: 29120602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity.
    Shen Q; Xiong Q; Zhou K; Feng Q; Liu L; Tian T; Wu C; Xiong Y; Melia TJ; Lusk CP; Lin C
    J Am Chem Soc; 2023 Jan; 145(2):1292-1300. PubMed ID: 36577119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels.
    Göpfrich K; Keyser UF
    Adv Exp Med Biol; 2019; 1174():331-370. PubMed ID: 31713205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA origami nanopores: developments, challenges and perspectives.
    Hernández-Ainsa S; Keyser UF
    Nanoscale; 2014 Nov; 6(23):14121-32. PubMed ID: 25325422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emerging Biomimetic Applications of DNA Nanotechnology.
    Shen H; Wang Y; Wang J; Li Z; Yuan Q
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):13859-13873. PubMed ID: 29939004
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes.
    Offenbartl-Stiegert D; Rottensteiner A; Dorey A; Howorka S
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202210886. PubMed ID: 36318092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered transmembrane pores.
    Ayub M; Bayley H
    Curr Opin Chem Biol; 2016 Oct; 34():117-126. PubMed ID: 27658267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA origami nanopores.
    Bell NA; Engst CR; Ablay M; Divitini G; Ducati C; Liedl T; Keyser UF
    Nano Lett; 2012 Jan; 12(1):512-7. PubMed ID: 22196850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene nanopore support system for simultaneous high-resolution AFM imaging and conductance measurements.
    Connelly LS; Meckes B; Larkin J; Gillman AL; Wanunu M; Lal R
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5290-6. PubMed ID: 24581087
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers.
    Khmelinskaia A; Mücksch J; Petrov EP; Franquelim HG; Schwille P
    Langmuir; 2018 Dec; 34(49):14921-14931. PubMed ID: 30253101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering Lipid Membranes with Programmable DNA Nanostructures.
    Shen Q; Grome MW; Yang Y; Lin C
    Adv Biosyst; 2020 Jan; 4(1):. PubMed ID: 31934608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T; Rahman MM; Uno H; Tero R; Nonogaki Y
    Nanomedicine; 2005 Dec; 1(4):317-22. PubMed ID: 17292105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ion permeation by a folded multiblock amphiphilic oligomer achieved by hierarchical construction of self-assembled nanopores.
    Muraoka T; Shima T; Hamada T; Morita M; Takagi M; Tabata KV; Noji H; Kinbara K
    J Am Chem Soc; 2012 Dec; 134(48):19788-94. PubMed ID: 23145887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.