These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33349977)

  • 21. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis.
    Lindahl E; Azuara C; Koehl P; Delarue M
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W52-6. PubMed ID: 16845062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of protein motions from amino acid sequence and its application to protein-protein interaction.
    Hirose S; Yokota K; Kuroda Y; Wako H; Endo S; Kanai S; Noguchi T
    BMC Struct Biol; 2010 Jul; 10():20. PubMed ID: 20626880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Approximate normal mode analysis based on vibrational subsystem analysis with high accuracy and efficiency.
    Hafner J; Zheng W
    J Chem Phys; 2009 May; 130(19):194111. PubMed ID: 19466825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Internal Normal Mode Analysis (iNMA) Applied to Protein Conformational Flexibility.
    Frezza E; Lavery R
    J Chem Theory Comput; 2015 Nov; 11(11):5503-12. PubMed ID: 26574338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.
    Na H; Jernigan RL; Song G
    PLoS Comput Biol; 2015 Oct; 11(10):e1004542. PubMed ID: 26473491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Normal Mode Analysis as a Routine Part of a Structural Investigation.
    Bauer JA; Pavlović J; Bauerová-Hlinková V
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31510014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of surface water on protein dynamics studied by a novel coarse-grained normal mode approach.
    Zhou L; Siegelbaum SA
    Biophys J; 2008 May; 94(9):3461-74. PubMed ID: 18212016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling protein conformational transitions by a combination of coarse-grained normal mode analysis and robotics-inspired methods.
    Al-Bluwi I; Vaisset M; Siméon T; Cortés J
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S2. PubMed ID: 24564964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
    Na H; Lin TL; Song G
    Adv Exp Med Biol; 2014; 805():107-35. PubMed ID: 24446359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iMod: multipurpose normal mode analysis in internal coordinates.
    Lopéz-Blanco JR; Garzón JI; Chacón P
    Bioinformatics; 2011 Oct; 27(20):2843-50. PubMed ID: 21873636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MAVENs: motion analysis and visualization of elastic networks and structural ensembles.
    Zimmermann MT; Kloczkowski A; Jernigan RL
    BMC Bioinformatics; 2011 Jun; 12():264. PubMed ID: 21711533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting large-scale conformational changes in proteins using energy-weighted normal modes.
    Palmer DS; Jensen F
    Proteins; 2011 Oct; 79(10):2778-93. PubMed ID: 21905106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biased coarse-grained molecular dynamics simulation approach for flexible fitting of X-ray structure into cryo electron microscopy maps.
    Grubisic I; Shokhirev MN; Orzechowski M; Miyashita O; Tama F
    J Struct Biol; 2010 Jan; 169(1):95-105. PubMed ID: 19800974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ProMode: a database of normal mode analyses on protein molecules with a full-atom model.
    Wako H; Kato M; Endo S
    Bioinformatics; 2004 Sep; 20(13):2035-43. PubMed ID: 15059828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches.
    Motta S; Bonati L
    J Chem Inf Model; 2017 Jul; 57(7):1563-1578. PubMed ID: 28616990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates.
    Lopéz-Blanco JR; Chacón P
    J Struct Biol; 2013 Nov; 184(2):261-70. PubMed ID: 23999189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.