BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33350055)

  • 1. Experimental nitrogen and phosphorus enrichment stimulates multiple trophic levels of algal and detrital-based food webs: a global meta-analysis from streams and rivers.
    Ardón M; Zeglin LH; Utz RM; Cooper SD; Dodds WK; Bixby RJ; Burdett AS; Follstad Shah J; Griffiths NA; Harms TK; Johnson SL; Jones JB; Kominoski JS; McDowell WH; Rosemond AD; Trentman MT; Van Horn D; Ward A
    Biol Rev Camb Philos Soc; 2020 Dec; ():. PubMed ID: 33350055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Litter P content drives consumer production in detritus-based streams spanning an experimental N:P gradient.
    Demi LM; Benstead JP; Rosemond AD; Maerz JC
    Ecology; 2018 Feb; 99(2):347-359. PubMed ID: 29266195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental N and P additions relieve stoichiometric constraints on organic matter flows through five stream food webs.
    Demi LM; Benstead JP; Rosemond AD; Maerz JC
    J Anim Ecol; 2020 Jun; 89(6):1468-1481. PubMed ID: 32124431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams.
    Ferreira V; Castagneyrol B; Koricheva J; Gulis V; Chauvet E; Graça MA
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):669-88. PubMed ID: 24935280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
    Manning DW; Rosemond AD; Gulis V; Benstead JP; Kominoski JS; Maerz JC
    Ecol Appl; 2016 Sep; 26(6):1745-1757. PubMed ID: 27755690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient enrichment reduces constraints on material flows in a detritus-based food web.
    Cross WF; Wallace JB; Rosemond AD
    Ecology; 2007 Oct; 88(10):2563-75. PubMed ID: 18027759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open riparian canopy and nutrient pollution interactively decrease trophic redundancy and allochthonous resource in streams.
    Zhang J; Tan X; Zhang Q
    Environ Res; 2023 Aug; 231(Pt 3):116296. PubMed ID: 37263470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways.
    Greenwood JL; Rosemond AD; Wallace JB; Cross WF; Weyers HS
    Oecologia; 2007 Apr; 151(4):637-49. PubMed ID: 17146682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient enrichment and food web composition affect ecosystem metabolism in an experimental seagrass habitat.
    Spivak AC; Canuel EA; Duffy JE; Richardson JP
    PLoS One; 2009 Oct; 4(10):e7473. PubMed ID: 19829713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem.
    Cross WF; Wallace JB; Rosemond AD; Eggert SL
    Ecology; 2006 Jun; 87(6):1556-65. PubMed ID: 16869431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems.
    Atwood TB; Hammill E; Richardson JS
    Glob Chang Biol; 2014 Nov; 20(11):3386-96. PubMed ID: 24753392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem.
    Benstead JP; Rosemond AD; Cross WF; Wallace JB; Eggert SL; Suberkropp K; Gulis V; Greenwood JL; Tant CJ
    Ecology; 2009 Sep; 90(9):2556-66. PubMed ID: 19769133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.
    Mykrä H; Sarremejane R; Laamanen T; Karjalainen SM; Markkola A; Lehtinen S; Lehosmaa K; Muotka T
    Ambio; 2019 Jan; 48(1):100-110. PubMed ID: 29663267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eutrophication of freshwater and coastal marine ecosystems: a global problem.
    Smith VH
    Environ Sci Pollut Res Int; 2003; 10(2):126-39. PubMed ID: 12729046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.
    Hood JM; Benstead JP; Cross WF; Huryn AD; Johnson PW; Gíslason GM; Junker JR; Nelson D; Ólafsson JS; Tran C
    Glob Chang Biol; 2018 Mar; 24(3):1069-1084. PubMed ID: 28922515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen loadings affect trophic structure in stream food webs on the Tibetan Plateau, China.
    Zhang J; Xu J; Tan X; Zhang Q
    Sci Total Environ; 2022 Oct; 844():157018. PubMed ID: 35772539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined carbon flows through detritus, microbes, and animals in reference and experimentally enriched stream ecosystems.
    Benstead JP; Cross WF; Gulis V; Rosemond AD
    Ecology; 2021 Mar; 102(3):e03279. PubMed ID: 33368179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil acidification reduces the effects of short-term nutrient enrichment on plant and soil biota and their interactions in grasslands.
    Xiao H; Wang B; Lu S; Chen D; Wu Y; Zhu Y; Hu S; Bai Y
    Glob Chang Biol; 2020 Aug; 26(8):4626-4637. PubMed ID: 32438518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Land use alters trophic redundancy and resource flow through stream food webs.
    Price EL; Sertić Perić M; Romero GQ; Kratina P
    J Anim Ecol; 2019 May; 88(5):677-689. PubMed ID: 30712255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient and stoichiometry dynamics of decomposing litter in stream ecosystems: A global synthesis.
    Robbins CJ; Manning DWP; Halvorson HM; Norman BC; Eckert RA; Pastor A; Dodd AK; Jabiol J; Bastias E; Gossiaux A; Mehring AS
    Ecology; 2023 Jul; 104(7):e4060. PubMed ID: 37186091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.