These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33350056)

  • 1. Highly Efficient InGaN Nanorods Photoelectrode by Constructing Z-scheme Charge Transfer System for Unbiased Water Splitting.
    Lin J; Zhang Z; Chai J; Cao B; Deng X; Wang W; Liu X; Li G
    Small; 2021 Jan; 17(3):e2006666. PubMed ID: 33350056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Ag Plasmonic Metal and WO
    Gelija D; Loka C; Goddati M; Bak NH; Lee J; Kim MD
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34883-34894. PubMed ID: 37452743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Z-Scheme Heterojunction for Photoelectrochemical Water Reduction.
    Sun H; Dong C; Liu Q; Yuan Y; Zhang T; Zhang J; Hou Y; Zhang D; Feng X
    Adv Mater; 2020 Oct; 32(39):e2002486. PubMed ID: 32820563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting.
    Li JM; Cheng HY; Chiu YH; Hsu YJ
    Nanoscale; 2016 Aug; 8(34):15720-9. PubMed ID: 27527337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layered Double Hydroxide onto Perovskite Oxide-Decorated ZnO Nanorods for Modulation of Carrier Transfer Behavior in Photoelectrochemical Water Oxidation.
    Long X; Wang C; Wei S; Wang T; Jin J; Ma J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2452-2459. PubMed ID: 31845790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Low-Cost Z-Scheme Heterostructure Cu
    Tian ZY; Kong LH; Wang Y; Wang HJ; Wang YJ; Yao S; Lu TB; Zhang ZM
    Small; 2021 Nov; 17(44):e2103558. PubMed ID: 34605183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial engineering of 1D/2D heterostructured photoanode for efficient photoelectrochemical water splitting.
    Wang Z; Qin Y; Wu X; He K; Li X; Wang J
    Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 35977454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceptor-Doping Accelerated Charge Separation in Cu
    Zhang M; Wang J; Xue H; Zhang J; Peng S; Han X; Deng Y; Hu W
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18463-18467. PubMed ID: 32533640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen passivation: a proficient strategy to enhance the optical and photoelectrochemical performance of InGaN/GaN single-quantum-well nanorods.
    Reddeppa M; Park BG; Majumder S; Kim YH; Oh JE; Kim SG; Kim D; Kim MD
    Nanotechnology; 2020 Nov; 31(47):475201. PubMed ID: 32629439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical study of carbon-modified p-type Cu
    Kaneza N; Shinde PS; Ma Y; Pan S
    RSC Adv; 2019 Apr; 9(24):13576-13585. PubMed ID: 35519550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent SO Bonding Enables Enhanced Photoelectrochemical Performance of Cu
    Zhang Y; Huang Y; Zhu SS; Liu YY; Zhang X; Wang JJ; Braun A
    Small; 2021 Jul; 17(30):e2100320. PubMed ID: 34151514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed Cu
    Ahn J; Lee S; Kim JH; Wajahat M; Sim HH; Bae J; Pyo J; Jahandar M; Lim DC; Seol SK
    Nanoscale Adv; 2020 Dec; 2(12):5600-5606. PubMed ID: 36133885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Z-Scheme Heterostructure of Vertically Oriented SnS
    Ma N; Lu C; Liu Y; Han T; Dong W; Wu D; Xu X
    Small; 2024 Jan; 20(3):e2304839. PubMed ID: 37702144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting.
    Hu Z; Wang R; Han C; Chen R
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):946-954. PubMed ID: 36041246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous 6H-SiC Photoanodes with a Conformal Coating of Ni-FeOOH Nanorods for Zero-Onset-Potential Water Splitting.
    Li B; Jian J; Chen J; Yu X; Sun J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7038-7046. PubMed ID: 31967447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of Photoelectrochemical Water Splitting by Controlling Direction of Carrier Movement Using InGaN/GaN Hetero-Structure Nanowires.
    Noh S; Shin J; Yu YT; Ryu MY; Kim JS
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the Enhanced Photoelectrochemical Performance through Construction of the Z-Scheme and Type II Heterojunctions.
    Wang Z; Ning X; Feng Y; Zhang R; He Y; Zhao H; Chen J; Du P; Lu X
    Anal Chem; 2022 Jun; 94(23):8539-8546. PubMed ID: 35658420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.