BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33350478)

  • 1. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part III: Sheep and goat.
    Li M; Wang YS; Elwell-Cuddy T; Baynes RE; Tell LA; Davis JL; Maunsell FP; Riviere JE; Lin Z
    J Vet Pharmacol Ther; 2021 Jul; 44(4):456-477. PubMed ID: 33350478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine.
    Lin Z; Li M; Wang YS; Tell LA; Baynes RE; Davis JL; Vickroy TW; Riviere JE
    J Vet Pharmacol Ther; 2020 Sep; 43(5):385-420. PubMed ID: 32270548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey.
    Wang YS; Li M; Tell LA; Baynes RE; Davis JL; Vickroy TW; Riviere JE; Lin Z
    J Vet Pharmacol Ther; 2020 Dec; 44(4):423-55. PubMed ID: 33289178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Application of an Interactive Physiologically Based Pharmacokinetic (iPBPK) Model to Predict Oxytetracycline Tissue Distribution and Withdrawal Intervals in Market-Age Sheep and Goats.
    Riad MH; Baynes RE; Tell LA; Davis JL; Maunsell FP; Riviere JE; Lin Z
    Toxicol Sci; 2021 Sep; 183(2):253-268. PubMed ID: 34329480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol, and Penicillin G.
    Chou WC; Tell LA; Baynes RE; Davis JL; Maunsell FP; Riviere JE; Lin Z
    Toxicol Sci; 2022 Jul; 188(2):180-197. PubMed ID: 35642931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic physiologically based kinetic modelling for farm animals: Part I. Data collection of physiological parameters in swine, cattle and sheep.
    Lautz LS; Dorne JLCM; Oldenkamp R; Hendriks AJ; Ragas AMJ
    Toxicol Lett; 2020 Feb; 319():95-101. PubMed ID: 31678400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk-based approach to developing a national residue sampling plan for testing under European Union regulation for veterinary medicinal products and coccidiostat feed additives in domestic animal production.
    Danaher M; Shanahan C; Butler F; Evans R; O'Sullivan D; Glynn D; Camon T; Lawlor P; O'Keeffe M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1155-65. PubMed ID: 27189753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment.
    Li M; Gehring R; Riviere JE; Lin Z
    Food Chem Toxicol; 2017 Sep; 107(Pt A):74-87. PubMed ID: 28627373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration.
    Li M; Cheng YH; Chittenden JT; Baynes RE; Tell LA; Davis JL; Vickroy TW; Riviere JE; Lin Z
    Arch Toxicol; 2019 Jul; 93(7):1865-1880. PubMed ID: 31025081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of physiological status on residues of lipophilic xenobiotics in livestock.
    MacLachlan DJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):692-712. PubMed ID: 19680941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organ weights and blood flows of sheep and pig for physiological pharmacokinetic modelling.
    Upton RN
    J Pharmacol Toxicol Methods; 2008; 58(3):198-205. PubMed ID: 18775498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-effects modeling of the interspecies pharmacokinetic scaling of oxytetracycline.
    Martín-Jiménez T; Riviere JE
    J Pharm Sci; 2002 Feb; 91(2):331-41. PubMed ID: 11835193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence of Campylobacter species in human, animal and food of animal origin and their antimicrobial susceptibility in Ethiopia: a systematic review and meta-analysis.
    Zenebe T; Zegeye N; Eguale T
    Ann Clin Microbiol Antimicrob; 2020 Dec; 19(1):61. PubMed ID: 33302968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a physiologically based pharmacokinetic model to predict tulathromycin distribution in goats.
    Leavens TL; Tell LA; Clothier KA; Griffith RW; Baynes RE; Riviere JE
    J Vet Pharmacol Ther; 2012 Apr; 35(2):121-31. PubMed ID: 21671946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling.
    Abduljalil K; Furness P; Johnson TN; Rostami-Hodjegan A; Soltani H
    Clin Pharmacokinet; 2012 Jun; 51(6):365-96. PubMed ID: 22515555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed effects modeling of the disposition of gentamicin across domestic animal species.
    Martín-Jiménez T; Riviere JE
    J Vet Pharmacol Ther; 2001 Oct; 24(5):321-32. PubMed ID: 11696082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Meta-Analysis of Toxoplasma gondii Prevalence in Food Animals in the United States.
    Guo M; Mishra A; Buchanan RL; Dubey JP; Hill DE; Gamble HR; Jones JL; Pradhan AK
    Foodborne Pathog Dis; 2016 Mar; 13(3):109-18. PubMed ID: 26854596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of αβ and γδ T cell subsets expressing IL-17A in ruminants and swine.
    Elnaggar MM; Abdellrazeq GS; Dassanayake RP; Fry LM; Hulubei V; Davis WC
    Dev Comp Immunol; 2018 Aug; 85():115-124. PubMed ID: 29627456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats.
    Kohn RA; Dinneen MM; Russek-Cohen E
    J Anim Sci; 2005 Apr; 83(4):879-89. PubMed ID: 15753344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-Related Changes in Pediatric Physiology: Quantitative Analysis of Organ Weights and Blood Flows : Age-Related Changes in Pediatric Physiology.
    Chang HP; Kim SJ; Wu D; Shah K; Shah DK
    AAPS J; 2021 Mar; 23(3):50. PubMed ID: 33791883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.