These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33350501)

  • 1. The budding yeast transition to quiescence.
    Miles S; Bradley GT; Breeden LL
    Yeast; 2021 Jan; 38(1):30-38. PubMed ID: 33350501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Msa1 and Msa2 Modulate G1-Specific Transcription to Promote G1 Arrest and the Transition to Quiescence in Budding Yeast.
    Miles S; Croxford MW; Abeysinghe AP; Breeden LL
    PLoS Genet; 2016 Jun; 12(6):e1006088. PubMed ID: 27272642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence.
    Swygert SG; Kim S; Wu X; Fu T; Hsieh TH; Rando OJ; Eisenman RN; Shendure J; McKnight JN; Tsukiyama T
    Mol Cell; 2019 Feb; 73(3):533-546.e4. PubMed ID: 30595435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling quiescence-specific repressive chromatin domains.
    Swygert SG; Tsukiyama T
    Curr Genet; 2019 Oct; 65(5):1145-1151. PubMed ID: 31055637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common strategy for initiating the transition from proliferation to quiescence.
    Miles S; Breeden L
    Curr Genet; 2017 May; 63(2):179-186. PubMed ID: 27544284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state.
    Miles S; Li L; Davison J; Breeden LL
    PLoS Genet; 2013 Oct; 9(10):e1003854. PubMed ID: 24204289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular quiescence in budding yeast.
    Sun S; Gresham D
    Yeast; 2021 Jan; 38(1):12-29. PubMed ID: 33350503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensin Depletion Causes Genome Decompaction Without Altering the Level of Global Gene Expression in
    Paul MR; Markowitz TE; Hochwagen A; Ercan S
    Genetics; 2018 Sep; 210(1):331-344. PubMed ID: 29970489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning.
    Kumar D; Prajapati HK; Mahilkar A; Ma CH; Mittal P; Jayaram M; Ghosh SK
    PLoS Genet; 2021 Jul; 17(7):e1009660. PubMed ID: 34270553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Yeast Genomes in Three Dimensions: Mechanisms and Functions.
    Noma KI
    Annu Rev Genet; 2017 Nov; 51():23-44. PubMed ID: 28853923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional repression by the histone tails in budding yeast is mediated by Rpd3, Tup1-Ssn6, and Bur6/NC2.
    Morse RH
    Gene; 2023 Aug; 878():147572. PubMed ID: 37336275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of functional sirtuin chromatin targets in yeast.
    Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS
    Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Promoter Targeting of a Conserved Lysine Deacetylase for Transcriptional Shutoff during Quiescence Entry.
    McKnight JN; Boerma JW; Breeden LL; Tsukiyama T
    Mol Cell; 2015 Sep; 59(5):732-43. PubMed ID: 26300265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases.
    Cao L; Tang Y; Quan Z; Zhang Z; Oliver SG; Zhang N
    PLoS Genet; 2016 Dec; 12(12):e1006458. PubMed ID: 27923067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Sleeping beauty": quiescence in Saccharomyces cerevisiae.
    Gray JV; Petsko GA; Johnston GC; Ringe D; Singer RA; Werner-Washburne M
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):187-206. PubMed ID: 15187181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes.
    Legros P; Malapert A; Niinuma S; Bernard P; Vanoosthuyse V
    PLoS Genet; 2014 Nov; 10(11):e1004794. PubMed ID: 25392932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMC complexes differentially compact mitotic chromosomes according to genomic context.
    Schalbetter SA; Goloborodko A; Fudenberg G; Belton JM; Miles C; Yu M; Dekker J; Mirny L; Baxter J
    Nat Cell Biol; 2017 Sep; 19(9):1071-1080. PubMed ID: 28825700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functional characteristics of the individual genomic condensin binding sites of Saccharomyces cerevisiae using minichromosome mitotic segregation stability model].
    Butylin PA; Strunnikov AV
    Tsitologiia; 2008; 50(9):788-93. PubMed ID: 18959191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation in yeast during diauxic shift and stationary phase.
    Galdieri L; Mehrotra S; Yu S; Vancura A
    OMICS; 2010 Dec; 14(6):629-38. PubMed ID: 20863251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast.
    Dorsey S; Tollis S; Cheng J; Black L; Notley S; Tyers M; Royer CA
    Cell Syst; 2018 May; 6(5):539-554.e11. PubMed ID: 29792825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.