These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 3335070)
1. Influence of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs. Feneley MP; Maier GW; Kern KB; Gaynor JW; Gall SA; Sanders AB; Raessler K; Muhlbaier LH; Rankin JS; Ewy GA Circulation; 1988 Jan; 77(1):240-50. PubMed ID: 3335070 [TBL] [Abstract][Full Text] [Related]
2. The role of bicarbonate and fluid loading in improving resuscitation from prolonged cardiac arrest with rapid manual chest compression CPR. Sanders AB; Kern KB; Fonken S; Otto CW; Ewy GA Ann Emerg Med; 1990 Jan; 19(1):1-7. PubMed ID: 2297147 [TBL] [Abstract][Full Text] [Related]
3. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Halperin HR; Tsitlik JE; Guerci AD; Mellits ED; Levin HR; Shi AY; Chandra N; Weisfeldt ML Circulation; 1986 Mar; 73(3):539-50. PubMed ID: 3948359 [TBL] [Abstract][Full Text] [Related]
4. Twenty-four hour survival in a canine model of cardiac arrest comparing three methods of manual cardiopulmonary resuscitation. Kern KB; Carter AB; Showen RL; Voorhees WD; Babbs CF; Tacker WA; Ewy GA J Am Coll Cardiol; 1986 Apr; 7(4):859-67. PubMed ID: 3958344 [TBL] [Abstract][Full Text] [Related]
5. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Niemann JT; Rosborough JP; Kassabian L; Salami B Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933 [TBL] [Abstract][Full Text] [Related]
6. Comparison Between 30:1 and 30:2 Compression-to-ventilation Ratios for Cardiopulmonary Resuscitation: Are Two Ventilations Necessary? Cha KC; Kim YW; Kim TH; Jung WJ; Yook H; Choi E; Cha YS; Kim OH; Kim H; Lee KH; Hwang SO Acad Emerg Med; 2015 Nov; 22(11):1261-6. PubMed ID: 26470011 [TBL] [Abstract][Full Text] [Related]
7. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chang MW; Coffeen P; Lurie KG; Shultz J; Bache RJ; White CW Chest; 1994 Oct; 106(4):1250-9. PubMed ID: 7924505 [TBL] [Abstract][Full Text] [Related]
8. Manual versus mechanical cardiopulmonary resuscitation in an experimental canine model. Kern KB; Carter AB; Showen RL; Voorhees WD; Babbs CF; Tacker WA; Ewy GA Crit Care Med; 1985 Nov; 13(11):899-903. PubMed ID: 4053636 [TBL] [Abstract][Full Text] [Related]
10. Failure of sodium bicarbonate to improve resuscitation from ventricular fibrillation in dogs. Guerci AD; Chandra N; Johnson E; Rayburn B; Wurmb E; Tsitlik J; Halperin HR; Siu C; Weisfeldt ML Circulation; 1986 Dec; 74(6 Pt 2):IV75-9. PubMed ID: 3022965 [TBL] [Abstract][Full Text] [Related]
11. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Timerman S; Cardoso LF; Ramires JA; Halperin H Resuscitation; 2004 Jun; 61(3):273-80. PubMed ID: 15172705 [TBL] [Abstract][Full Text] [Related]
12. Long-term survival with open-chest cardiac massage after ineffective closed-chest compression in a canine preparation. Kern KB; Sanders AB; Badylak SF; Janas W; Carter AB; Tacker WA; Ewy GA Circulation; 1987 Feb; 75(2):498-503. PubMed ID: 3802452 [TBL] [Abstract][Full Text] [Related]
13. A physiologic comparison of external cardiac massage techniques. Newton JR; Glower DD; Wolfe JA; Tyson GS; Spratt JA; Fenely MP; Rankin JS; Olsen CO J Thorac Cardiovasc Surg; 1988 May; 95(5):892-901. PubMed ID: 3361936 [TBL] [Abstract][Full Text] [Related]
14. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959 [TBL] [Abstract][Full Text] [Related]
15. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest. Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457 [TBL] [Abstract][Full Text] [Related]
16. [Establishment of porcine model of prolonged cardiac arrest and cardiopulmonary resuscitation electrically induced by ventricular fibrillation]. Wen C; Li H; Zhai X; Ding Y; Zhou H; Ouyang Z; Yang Z; Jiang L; Tang W; Yu T Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2017 Jun; 29(6):536-541. PubMed ID: 28625244 [TBL] [Abstract][Full Text] [Related]
17. Comparison of mechanical techniques of cardiopulmonary resuscitation: survival and neurologic outcome in dogs. Kern KB; Carter AB; Showen RL; Voorhees WD; Babbs CF; Tacker WA; Ewy GA Am J Emerg Med; 1987 May; 5(3):190-5. PubMed ID: 3580049 [TBL] [Abstract][Full Text] [Related]
18. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Lindner KH; Pfenninger EG; Lurie KG; Schürmann W; Lindner IM; Ahnefeld FW Circulation; 1993 Sep; 88(3):1254-63. PubMed ID: 8353887 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Michael JR; Guerci AD; Koehler RC; Shi AY; Tsitlik J; Chandra N; Niedermeyer E; Rogers MC; Traystman RJ; Weisfeldt ML Circulation; 1984 Apr; 69(4):822-35. PubMed ID: 6697465 [TBL] [Abstract][Full Text] [Related]
20. The effects of an automatic, low pressure and constant flow ventilation device versus manual ventilation during cardiovascular resuscitation in a porcine model of cardiac arrest. Hu X; Ramadeen A; Laurent G; So PP; Baig E; Hare GM; Dorian P Resuscitation; 2013 Aug; 84(8):1150-5. PubMed ID: 23454260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]