These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33350805)

  • 1. Molecular Chirality Detection with Periodic Arrays of Three-Dimensional Twisted Metamaterials.
    Lin CY; Liu CC; Chen YY; Chiu KY; Wu JD; Lin BL; Wang CH; Chen YF; Chang SH; Chang YC
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1152-1157. PubMed ID: 33350805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Nanofabrication of Designed Nanostructures Using Angled Nanospherical-Lens Lithography for Surface Enhanced Infrared Absorption Spectroscopy.
    Chien YH; Wang CH; Liu CC; Chang SH; Kong KV; Chang YC
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24917-24925. PubMed ID: 28671812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoimprinted Chiral Plasmonic Substrates with Three-Dimensional Nanostructures.
    Zhang M; Pacheco-Peña V; Yu Y; Chen W; Greybush NJ; Stein A; Engheta N; Murray CB; Kagan CR
    Nano Lett; 2018 Nov; 18(11):7389-7394. PubMed ID: 30257094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.
    Lee HE; Ahn HY; Mun J; Lee YY; Kim M; Cho NH; Chang K; Kim WS; Rho J; Nam KT
    Nature; 2018 Apr; 556(7701):360-365. PubMed ID: 29670265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography.
    Chang YC; Lu SC; Chung HC; Wang SM; Tsai TD; Guo TF
    Sci Rep; 2013 Nov; 3():3339. PubMed ID: 24284941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation.
    Huang Z; Yao K; Su G; Ma W; Li L; Liu Y; Zhan P; Wang Z
    Opt Lett; 2018 Jun; 43(11):2636-2639. PubMed ID: 29856381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral biosensing using terahertz twisted chiral metamaterial.
    Zhang M; Hao D; Wang S; Li R; Wang S; Ma Y; Moro R; Ma L
    Opt Express; 2022 Apr; 30(9):14651-14660. PubMed ID: 35473204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirality detection of enantiomers using twisted optical metamaterials.
    Zhao Y; Askarpour AN; Sun L; Shi J; Li X; Alù A
    Nat Commun; 2017 Jan; 8():14180. PubMed ID: 28120825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular Sensing at the Interface between Chiral Metasurfaces and Hyperbolic Metamaterials.
    Palermo G; Lio GE; Esposito M; Ricciardi L; Manoccio M; Tasco V; Passaseo A; De Luca A; Strangi G
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30181-30188. PubMed ID: 32551524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metamaterials: optical activity without chirality.
    Plum E; Liu XX; Fedotov VA; Chen Y; Tsai DP; Zheludev NI
    Phys Rev Lett; 2009 Mar; 102(11):113902. PubMed ID: 19392202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral three-dimensional supramolecular assemblies: colloidal onions, cubosomes, and hexosomes.
    Wang DY; Ren LJ; Liu HK; Wang W
    Soft Matter; 2022 Nov; 18(45):8656-8662. PubMed ID: 36349695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of circular dichroism and asymmetric transmission in Babinet-complementary metamaterials.
    Qu Y; Lei L; Yu Y; Zhang X; Qian Z
    Opt Express; 2022 Aug; 30(17):30394-30404. PubMed ID: 36242144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Five-fold plasmonic Fano resonances with giant bisignate circular dichroism.
    Tian X; Liu Z; Lin H; Jia B; Li ZY; Li J
    Nanoscale; 2018 Sep; 10(35):16630-16637. PubMed ID: 30155531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral metamaterials via Moiré stacking.
    Wu Z; Liu Y; Hill EH; Zheng Y
    Nanoscale; 2018 Oct; 10(38):18096-18112. PubMed ID: 30004551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Plasmonic Metamaterials with Tunable Chirality.
    Guan Y; Wang Z; Ai B; Chen C; Zhang W; Wang Y; Zhang G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50192-50202. PubMed ID: 33090757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanophotonic Approaches for Chirality Sensing.
    Warning LA; Miandashti AR; McCarthy LA; Zhang Q; Landes CF; Link S
    ACS Nano; 2021 Oct; 15(10):15538-15566. PubMed ID: 34609836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular dichroism from chiral nanomaterial fabricated by on-edge lithography.
    Dietrich K; Lehr D; Helgert C; Tünnermann A; Kley EB
    Adv Mater; 2012 Nov; 24(44):OP321-5. PubMed ID: 23042699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.