These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33351552)
1. Predicting the Development of Surgery-Related Pressure Injury Using a Machine Learning Algorithm Model. Cai JY; Zha ML; Song YP; Chen HL J Nurs Res; 2020 Dec; 29(1):e135. PubMed ID: 33351552 [TBL] [Abstract][Full Text] [Related]
2. Artificial Neural Network: A Method for Prediction of Surgery-Related Pressure Injury in Cardiovascular Surgical Patients. Chen HL; Yu SJ; Xu Y; Yu SQ; Zhang JQ; Zhao JY; Liu P; Zhu B J Wound Ostomy Continence Nurs; 2018; 45(1):26-30. PubMed ID: 29189496 [TBL] [Abstract][Full Text] [Related]
3. Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease. Shi H; Yang D; Tang K; Hu C; Li L; Zhang L; Gong T; Cui Y Clin Nutr; 2022 Jan; 41(1):202-210. PubMed ID: 34906845 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study. Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a machine learning predictive model for perioperative myocardial injury in cardiac surgery with cardiopulmonary bypass. Li Q; Lv H; Chen Y; Shen J; Shi J; Zhou C J Cardiothorac Surg; 2024 Jun; 19(1):384. PubMed ID: 38926872 [TBL] [Abstract][Full Text] [Related]
6. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589 [TBL] [Abstract][Full Text] [Related]
7. Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization--XGBoost machine learning model can be interpreted based on SHAP. Xu J; Chen T; Fang X; Xia L; Pan X Intensive Crit Care Nurs; 2024 Aug; 83():103715. PubMed ID: 38701634 [TBL] [Abstract][Full Text] [Related]
8. Preoperative plasma growth-differentiation factor-15 for prediction of acute kidney injury in patients undergoing cardiac surgery. Heringlake M; Charitos EI; Erber K; Berggreen AE; Heinze H; Paarmann H Crit Care; 2016 Oct; 20(1):317. PubMed ID: 27717384 [TBL] [Abstract][Full Text] [Related]
9. Predictive Utility of a Machine Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery. Kilic A; Goyal A; Miller JK; Gjekmarkaj E; Tam WL; Gleason TG; Sultan I; Dubrawksi A Ann Thorac Surg; 2020 Jun; 109(6):1811-1819. PubMed ID: 31706872 [TBL] [Abstract][Full Text] [Related]
10. [Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database]. Xiong W; Zhang L; She K; Xu G; Bai S; Liu X Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Nov; 34(11):1188-1193. PubMed ID: 36567564 [TBL] [Abstract][Full Text] [Related]
11. Improving Stroke Risk Prediction in the General Population: A Comparative Assessment of Common Clinical Rules, a New Multimorbid Index, and Machine-Learning-Based Algorithms. Lip GYH; Genaidy A; Tran G; Marroquin P; Estes C; Sloop S Thromb Haemost; 2022 Jan; 122(1):142-150. PubMed ID: 33765685 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study. Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223 [TBL] [Abstract][Full Text] [Related]
13. A machine learning algorithm-based predictive model for pressure injury risk in emergency patients: A prospective cohort study. Wei L; Lv H; Yue C; Yao Y; Gao N; Chai Q; Lu M Int Emerg Nurs; 2024 Jun; 74():101419. PubMed ID: 38432045 [TBL] [Abstract][Full Text] [Related]
14. Pressure ulcer risk assessment immediately after cardiac surgery--does it make a difference? A comparison of three pressure ulcer risk assessment instruments within a cardiac surgery population. Feuchtinger J; Halfens R; Dassen T Nurs Crit Care; 2007; 12(1):42-9. PubMed ID: 17883663 [TBL] [Abstract][Full Text] [Related]
15. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Kor DJ; Warner DO; Alsara A; Fernández-Pérez ER; Malinchoc M; Kashyap R; Li G; Gajic O Anesthesiology; 2011 Jul; 115(1):117-28. PubMed ID: 21694510 [TBL] [Abstract][Full Text] [Related]
16. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
17. A new nomogram score for predicting surgery-related pressure ulcers in cardiovascular surgical patients. Lu CX; Chen HL; Shen WQ; Feng LP Int Wound J; 2017 Feb; 14(1):226-232. PubMed ID: 26991609 [TBL] [Abstract][Full Text] [Related]
18. Predicting Pressure Injury in Critical Care Patients: A Machine-Learning Model. Alderden J; Pepper GA; Wilson A; Whitney JD; Richardson S; Butcher R; Jo Y; Cummins MR Am J Crit Care; 2018 Nov; 27(6):461-468. PubMed ID: 30385537 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning Algorithm Identifies Patients at High Risk for Early Complications After Intracranial Tumor Surgery: Registry-Based Cohort Study. van Niftrik CHB; van der Wouden F; Staartjes VE; Fierstra J; Stienen MN; Akeret K; Sebök M; Fedele T; Sarnthein J; Bozinov O; Krayenbühl N; Regli L; Serra C Neurosurgery; 2019 Oct; 85(4):E756-E764. PubMed ID: 31149726 [TBL] [Abstract][Full Text] [Related]
20. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Englberger L; Suri RM; Li Z; Dearani JA; Park SJ; Sundt TM; Schaff HV Am J Kidney Dis; 2010 Oct; 56(4):623-31. PubMed ID: 20630639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]