These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach. Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622 [TBL] [Abstract][Full Text] [Related]
4. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Ebner M; Wang G; Li W; Aertsen M; Patel PA; Aughwane R; Melbourne A; Doel T; Dymarkowski S; De Coppi P; David AL; Deprest J; Ourselin S; Vercauteren T Neuroimage; 2020 Feb; 206():116324. PubMed ID: 31704293 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs. Huang X; Liu Y; Li Y; Qi K; Gao A; Zheng B; Liang D; Long X Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679449 [TBL] [Abstract][Full Text] [Related]
6. Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach. Zhao L; Asis-Cruz JD; Feng X; Wu Y; Kapse K; Largent A; Quistorff J; Lopez C; Wu D; Qing K; Meyer C; Limperopoulos C AJNR Am J Neuroradiol; 2022 Mar; 43(3):448-454. PubMed ID: 35177547 [TBL] [Abstract][Full Text] [Related]
7. Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks. Khalili N; Turk E; Benders MJNL; Moeskops P; Claessens NHP; de Heus R; Franx A; Wagenaar N; Breur JMPJ; Viergever MA; Išgum I Neuroimage Clin; 2019; 24():102061. PubMed ID: 31835284 [TBL] [Abstract][Full Text] [Related]
8. Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation. Hong J; Yun HJ; Park G; Kim S; Laurentys CT; Siqueira LC; Tarui T; Rollins CK; Ortinau CM; Grant PE; Lee JM; Im K Front Neurosci; 2020; 14():591683. PubMed ID: 33343286 [TBL] [Abstract][Full Text] [Related]
9. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Spatial Attentive Deep Learning for Automatic Placental Segmentation on Longitudinal MRI. Liu Y; Zabihollahy F; Yan R; Lee B; Janzen C; Devaskar SU; Sung K J Magn Reson Imaging; 2023 May; 57(5):1533-1540. PubMed ID: 37021577 [TBL] [Abstract][Full Text] [Related]
11. Automatic segmentation and grading of ankylosing spondylitis on MR images via lightweight hybrid multi-scale convolutional neural network with reinforcement learning. Gou S; Lu Y; Tong N; Huang L; Liu N; Han Q Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34517352 [No Abstract] [Full Text] [Related]
12. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network. Tomita N; Jiang S; Maeder ME; Hassanpour S Neuroimage Clin; 2020; 27():102276. PubMed ID: 32512401 [TBL] [Abstract][Full Text] [Related]
13. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
14. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042 [TBL] [Abstract][Full Text] [Related]
16. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026 [TBL] [Abstract][Full Text] [Related]
17. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
18. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging. Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555 [TBL] [Abstract][Full Text] [Related]
19. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT. Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071 [TBL] [Abstract][Full Text] [Related]
20. Learning to segment fetal brain tissue from noisy annotations. Karimi D; Rollins CK; Velasco-Annis C; Ouaalam A; Gholipour A Med Image Anal; 2023 Apr; 85():102731. PubMed ID: 36608414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]