These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33352362)

  • 1. The effect of intermittent drying and wetting stormwater cycles on the nutrient removal performances of two vegetated biofiltration designs.
    Zinger Y; Prodanovic V; Zhang K; Fletcher TD; Deletic A
    Chemosphere; 2021 Mar; 267():129294. PubMed ID: 33352362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-mode stormwater-greywater biofilters: The impact of alternating water sources on treatment performance.
    Barron NJ; Deletic A; Jung J; Fowdar H; Chen Y; Hatt BE
    Water Res; 2019 Aug; 159():521-537. PubMed ID: 31132624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: the role of filter media, vegetation and saturated zone.
    Glaister BJ; Fletcher TD; Cook PL; Hatt BE
    Water Sci Technol; 2014; 69(9):1961-9. PubMed ID: 24804674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters.
    Blecken GT; Zinger Y; Deletić A; Fletcher TD; Viklander M
    Water Res; 2009 Oct; 43(18):4590-8. PubMed ID: 19683781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal operation of dual-mode biofilters: The influence of plant species on stormwater and greywater treatment.
    Barron NJ; Hatt B; Jung J; Chen Y; Deletic A
    Sci Total Environ; 2020 May; 715():136680. PubMed ID: 32018097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff.
    You Z; Zhang L; Pan SY; Chiang PC; Pei S; Zhang S
    Water Res; 2019 Sep; 161():61-73. PubMed ID: 31176885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of dissolved nitrogen, phosphorus and carbon from stormwater by biofiltration mesocosms.
    Henderson C; Greenway M; Phillips I
    Water Sci Technol; 2007; 55(4):183-91. PubMed ID: 17425085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes.
    Hatt BE; Fletcher TD; Deletic A
    Water Sci Technol; 2007; 56(12):11-9. PubMed ID: 18075173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.
    Szota C; Farrell C; Livesley SJ; Fletcher TD
    Water Res; 2015 Oct; 83():195-204. PubMed ID: 26150068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of stormwater biofilter design and operational variables on nutrient removal - a statistical modelling approach.
    Zhang K; Liu Y; Deletic A; McCarthy DT; Hatt BE; Payne EGI; Chandrasena G; Li Y; Pham T; Jamali B; Daly E; Fletcher TD; Lintern A
    Water Res; 2021 Jan; 188():116486. PubMed ID: 33080456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stormwater reuse: designing biofiltration systems for reliable treatment.
    Hatt BE; Deletic A; Fletcher TD
    Water Sci Technol; 2007; 55(4):201-9. PubMed ID: 17425087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Potential Role of Urban Forests in Removing Nutrients from Stormwater.
    Denman EC; May PB; Moore GM
    J Environ Qual; 2016 Jan; 45(1):207-14. PubMed ID: 26828176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pollutant removal performance of field-scale stormwater biofiltration systems.
    Hatt BE; Fletcher TD; Deletic A
    Water Sci Technol; 2009; 59(8):1567-76. PubMed ID: 19403970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic and nutrient removal performance of vegetated filter strips with engineered infiltration media for treatment of roadway runoff.
    Shokri M; Kibler KM; Hagglund C; Corrado A; Wang D; Beazley M; Wanielista M
    J Environ Manage; 2021 Dec; 300():113747. PubMed ID: 34649328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions.
    Kong Z; Song Y; Shao Z; Chai H
    Water Res; 2021 Nov; 206():117737. PubMed ID: 34637973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media.
    Subramaniam DN; Egodawatta P; Mather P; Rajapakse JP
    Environ Manage; 2015 Sep; 56(3):630-42. PubMed ID: 25971737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of Three Bioretention Configurations on Dissolved Nitrogen Removal from Urban Stormwater].
    Li LQ; Hu N; Liu YQ; Tu SL; Chen HC
    Huan Jing Ke Xue; 2017 May; 38(5):1881-1888. PubMed ID: 29965092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioretention cell incorporating Fe-biochar and saturated zones for enhanced stormwater runoff treatment.
    Xiong J; Ren S; He Y; Wang XC; Bai X; Wang J; Dzakpasu M
    Chemosphere; 2019 Dec; 237():124424. PubMed ID: 31377594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do mycorrhizae increase plant growth and pollutant removal in stormwater biofilters?
    Palacios YM; Gleadow R; Davidson C; Gan W; Winfrey B
    Water Res; 2021 Sep; 202():117381. PubMed ID: 34233250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding nutrient dynamics for effective stormwater treatment design.
    Wijesiri B; Liu A; Miguntanna N; He B; Goonetilleke A
    Sci Total Environ; 2022 Dec; 850():157962. PubMed ID: 35964744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.