These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33352367)

  • 21. Maize cob (Zea mays) as natural biomass sorbent for crude oil biosorptive removal from contaminated seawater: Taguchi process optimization and biosorptive removal mechanism.
    Eboibi BE; Ogbue MC; Udochukwu EC; Umukoro JE; Okan LO; Agarry SE
    Environ Monit Assess; 2023 Sep; 195(10):1145. PubMed ID: 37668765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionalized three-dimensional graphene sponges for highly efficient crude and diesel oil adsorption.
    Bagoole O; Rahman MM; Shah S; Hong H; Chen H; Al Ghaferi A; Younes H
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23091-23105. PubMed ID: 29860688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Hydrophobic Carbon Sponge Nanocomposite for Oil Spill Cleanup.
    Medjahdi M; Mahida B; Benderdouche N; Mechab B; Bestani B; Reinert L; Duclaux L; Baillis D
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of a bio-based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye.
    da Rosa Schio R; da Rosa BC; Gonçalves JO; Pinto LAA; Mallmann ES; Dotto GL
    Int J Biol Macromol; 2019 Jan; 121():373-380. PubMed ID: 30287377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater.
    Ceylan D; Dogu S; Karacik B; Yakan SD; Okay OS; Okay O
    Environ Sci Technol; 2009 May; 43(10):3846-52. PubMed ID: 19544897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H
    Xu C; Jiao C; Yao R; Lin A; Jiao W
    Environ Pollut; 2018 Feb; 233():194-200. PubMed ID: 29078123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption of dispersed petroleum hydrocarbons by activated charcoals: Effects of oil dispersants.
    Ji H; Xie W; Liu W; Liu X; Zhao D
    Environ Pollut; 2020 Jan; 256():113416. PubMed ID: 31677871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.
    Alessandrello MJ; Juárez Tomás MS; Raimondo EE; Vullo DL; Ferrero MA
    Mar Pollut Bull; 2017 Sep; 122(1-2):156-160. PubMed ID: 28641883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of microorganisms immobilized on composite polyurethane foam to remove Cu(II) from aqueous solution.
    Zhou LC; Li YF; Bai X; Zhao GH
    J Hazard Mater; 2009 Aug; 167(1-3):1106-13. PubMed ID: 19246155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow.
    Olivito F; Algieri V; Jiritano A; Tallarida MA; Costanzo P; Maiuolo L; De Nino A
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal.
    Chen YC; Tai W
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supercritical CO
    Cui S; Wu M; Xu M; Li X; Ren Q; Wang L; Zheng W
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132138. PubMed ID: 38718998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of chemical bond and solvent solubility parameter on stability and absorption value of functionalized PU sponge.
    Javadian S; Ramezani A; Sadrpoor SM; Saeedi Dehaghani AH
    Chemosphere; 2023 Nov; 340():139936. PubMed ID: 37619755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-Based Polyurethane Composite Foams with Improved Mechanical, Thermal, and Antibacterial Properties.
    Członka S; Strąkowska A; Strzelec K; Kairytė A; Kremensas A
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32131392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Green Approach to Modify Surface Properties of Polyurethane Foam for Enhanced Oil Absorption.
    Ng ZC; Roslan RA; Lau WJ; Gürsoy M; Karaman M; Jullok N; Ismail AF
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manufacturing and Characterization of Novel Electrospun Composite Comprising Polyurethane and Mustard Oil Scaffold with Enhanced Blood Compatibility.
    Jaganathan SK; Mani MP; Ismail AF; Ayyar M
    Polymers (Basel); 2017 May; 9(5):. PubMed ID: 30970842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of Performance of
    Ben Jmaa S; Kallel A
    Biomed Res Int; 2019; 2019():6029654. PubMed ID: 31828109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption.
    Zhao J; Xu L; Su Y; Yu H; Liu H; Qian S; Zheng W; Zhao Y
    J Environ Sci (China); 2021 Mar; 101():177-188. PubMed ID: 33334514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery.
    Periasamy AP; Wu WP; Ravindranath R; Roy P; Lin GL; Chang HT
    Mar Pollut Bull; 2017 Jan; 114(2):888-895. PubMed ID: 27863883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on preparation and performance of PEG-based polyurethane foams modified by the chitosan with different molecular weight.
    Qin H; Wang K
    Int J Biol Macromol; 2019 Nov; 140():877-885. PubMed ID: 31446107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.