These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 33352515)
61. Insights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: Reactivity, products, and mechanism. Diao ZH; Qian W; Lei ZX; Kong LJ; Du JJ; Liu H; Yang JW; Pu SY Sci Total Environ; 2019 Apr; 660():541-549. PubMed ID: 30641381 [TBL] [Abstract][Full Text] [Related]
62. Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite. Fei X; Cao L; Zhou L; Gu Y; Wang X Water Sci Technol; 2012; 66(12):2539-45. PubMed ID: 23109568 [TBL] [Abstract][Full Text] [Related]
63. Prediction of N-nitrosodimethylamine (NDMA) formation as a disinfection by-product. Kim J; Clevenger TE J Hazard Mater; 2007 Jun; 145(1-2):270-6. PubMed ID: 17182179 [TBL] [Abstract][Full Text] [Related]
64. Synthesis of Nanoscale Zerovalent Iron (nZVI) Supported on Biochar for Chromium Remediation from Aqueous Solution and Soil. Wang H; Zhang M; Li H Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31726717 [TBL] [Abstract][Full Text] [Related]
65. Formation of N-nitrosamines during the analysis of municipal secondary biological nutrient removal process effluents by US EPA method 521. Chuang YH; Shabani F; Munoz J; Aflaki R; Hammond SD; Mitch WA Chemosphere; 2019 Apr; 221():597-605. PubMed ID: 30665089 [TBL] [Abstract][Full Text] [Related]
66. Adsorption Kinetics of Arsenic (V) on Nanoscale Zero-Valent Iron Supported by Activated Carbon. Zhu H; Shi M; Zhang X; Liu B; Yao D Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916922 [TBL] [Abstract][Full Text] [Related]
67. Nanoscale zero-valent iron for the removal of Zn2+, Zn(II)-EDTA and Zn(II)-citrate from aqueous solutions. Kržišnik N; Mladenovič A; Škapin AS; Škrlep L; Ščančar J; Milačič R Sci Total Environ; 2014 Apr; 476-477():20-8. PubMed ID: 24463023 [TBL] [Abstract][Full Text] [Related]
68. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Giasuddin AB; Kanel SR; Choi H Environ Sci Technol; 2007 Mar; 41(6):2022-7. PubMed ID: 17410800 [TBL] [Abstract][Full Text] [Related]
69. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. Qiu Y; Zhang Q; Gao B; Li M; Fan Z; Sang W; Hao H; Wei X Environ Pollut; 2020 Oct; 265(Pt B):115018. PubMed ID: 32806451 [TBL] [Abstract][Full Text] [Related]
70. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Qian L; Shang X; Zhang B; Zhang W; Su A; Chen Y; Ouyang D; Han L; Yan J; Chen M Chemosphere; 2019 Jan; 215():739-745. PubMed ID: 30347367 [TBL] [Abstract][Full Text] [Related]
71. Hydrophobic modification of nanoscale zero-valent iron with excellent stability and floatability for efficient removal of floating oil on water. Peng Z; Xiong C; Wang W; Tan F; Wang X; Qiao X; Wong PK Chemosphere; 2018 Jun; 201():110-118. PubMed ID: 29518728 [TBL] [Abstract][Full Text] [Related]
72. Simultaneous removal of Cu Liu CM; Diao ZH; Huo WY; Kong LJ; Du JJ Environ Pollut; 2018 Aug; 239():698-705. PubMed ID: 29715689 [TBL] [Abstract][Full Text] [Related]
73. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. Liang L; Li X; Guo Y; Lin Z; Su X; Liu B J Hazard Mater; 2021 Feb; 404(Pt A):124057. PubMed ID: 33022528 [TBL] [Abstract][Full Text] [Related]
74. Modeling arsenic removal by nanoscale zero-valent iron. Rashid US; Saini-Eidukat B; Bezbaruah AN Environ Monit Assess; 2020 Jan; 192(2):110. PubMed ID: 31938851 [TBL] [Abstract][Full Text] [Related]
75. Graphene oxide-induced formation of a boron-doped iron oxide shell on the surface of NZVI for enhancing nitrate removal. Han L; Li B; Tao S; An J; Fu B; Han Y; Li W; Li X; Peng S; Yin T Chemosphere; 2020 Aug; 252():126496. PubMed ID: 32203782 [TBL] [Abstract][Full Text] [Related]
76. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Zou Y; Wang X; Khan A; Wang P; Liu Y; Alsaedi A; Hayat T; Wang X Environ Sci Technol; 2016 Jul; 50(14):7290-304. PubMed ID: 27331413 [TBL] [Abstract][Full Text] [Related]
77. Removal of Sb(III) by sulfidated nanoscale zerovalent iron: The mechanism and impact of environmental conditions. Liu S; Feng H; Tang L; Dong H; Wang J; Yu J; Feng C; Liu Y; Luo T; Ni T Sci Total Environ; 2020 Sep; 736():139629. PubMed ID: 32474279 [TBL] [Abstract][Full Text] [Related]
78. Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system. Zha Y; Zhou Z; He H; Wang T; Luo L Water Sci Technol; 2016; 73(11):2815-23. PubMed ID: 27232419 [TBL] [Abstract][Full Text] [Related]
79. Facile modification of nanoscale zero-valent iron with high stability for Cr(VI) remediation. Peng Z; Xiong C; Wang W; Tan F; Xu Y; Wang X; Qiao X Sci Total Environ; 2017 Oct; 596-597():266-273. PubMed ID: 28437645 [TBL] [Abstract][Full Text] [Related]
80. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Dong H; Li L; Lu Y; Cheng Y; Wang Y; Ning Q; Wang B; Zhang L; Zeng G Environ Int; 2019 Mar; 124():265-277. PubMed ID: 30660027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]