These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33352543)

  • 1. Markov models from the square root approximation of the Fokker-Planck equation: calculating the grid-dependent flux.
    Donati L; Weber M; Keller BG
    J Phys Condens Matter; 2021 Mar; 33(11):115902. PubMed ID: 33352543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
    Börgers C; Larsen EW
    Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory.
    Zhan Y; Shizgal BD
    Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the Fokker-Planck kinetic equation on a lattice.
    Moroni D; Rotenberg B; Hansen JP; Succi S; Melchionna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066707. PubMed ID: 16907023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the accuracy of generalized Fokker-Planck transport equations in tissue optics.
    Phillips KG; Lancellotti C
    Appl Opt; 2009 Jan; 48(2):229-41. PubMed ID: 19137033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrum of the fokker-planck operator representing diffusion in a random velocity field.
    Chalker JT; Wang ZJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):196-203. PubMed ID: 11046255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian bridges for stochastic chemical processes-An approximation method based on the asymptotic behavior of the backward Fokker-Planck equation.
    Wang S; Venkatesh A; Ramkrishna D; Narsimhan V
    J Chem Phys; 2022 May; 156(18):184108. PubMed ID: 35568530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact milestoning.
    Bello-Rivas JM; Elber R
    J Chem Phys; 2015 Mar; 142(9):094102. PubMed ID: 25747056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic phase transition operator.
    Yamanobe T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011924. PubMed ID: 21867230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grid-free powder averages: on the applications of the Fokker-Planck equation to solid state NMR.
    Edwards LJ; Savostyanov DV; Nevzorov AA; Concistrè M; Pileio G; Kuprov I
    J Magn Reson; 2013 Oct; 235():121-9. PubMed ID: 23942141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaseous microflow modeling using the Fokker-Planck equation.
    Singh SK; Thantanapally C; Ansumali S
    Phys Rev E; 2016 Dec; 94(6-1):063307. PubMed ID: 28085383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems.
    Chen N; Majda AJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12864-12869. PubMed ID: 29158403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation.
    Riegert A; Baba N; Gelfert K; Just W; Kantz H
    Phys Rev Lett; 2005 Feb; 94(5):054103. PubMed ID: 15783645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fokker-Planck equation for Coulomb relaxation and wave-particle diffusion: Spectral solution and the stability of the Kappa distribution to Coulomb collisions.
    Zhang W; Shizgal BD
    Phys Rev E; 2020 Dec; 102(6-1):062103. PubMed ID: 33466053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian Markov transition models of molecular kinetics.
    Wu H; Noé F
    J Chem Phys; 2015 Feb; 142(8):084104. PubMed ID: 25725709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo Simulation of Stochastic Differential Equation to Study Information Geometry.
    Thiruthummal AA; Kim EJ
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximation to a Fokker-Planck equation for the Brownian motor.
    Ikota R
    Phys Rev E; 2018 Jun; 97(6-1):062111. PubMed ID: 30011433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.