These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33352691)

  • 1. Biomechanical Design and Prototyping of a Powered Ankle-Foot Prosthesis.
    Alleva S; Antonelli MG; Zobel PB; Durante F
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33352691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel passive ankle-foot prosthesis mimics able-bodied ankle angles and ground reaction forces.
    Schlafly M; Reed KB
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():202-210. PubMed ID: 31991286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users.
    Moltedo M; Baček T; Serrien B; Langlois K; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    J Neuroeng Rehabil; 2020 Jul; 17(1):98. PubMed ID: 32680539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a powered ankle-foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations.
    Montgomery JR; Grabowski AM
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction.
    Russell Esposito E; Schmidtbauer KA; Wilken JM
    J Neuroeng Rehabil; 2018 Nov; 15(1):111. PubMed ID: 30463576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.
    Sinitski EH; Hansen AH; Wilken JM
    J Biomech; 2012 Feb; 45(3):588-94. PubMed ID: 22177669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of an Underactuated Powered Ankle and Toe Prosthesis.
    Gabert L; Tran M; Lenzi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4920-4923. PubMed ID: 34892311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.
    Ficanha EM; Rastgaar M; Kaufman KR
    J Rehabil Res Dev; 2015; 52(1):97-112. PubMed ID: 26186014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking on uneven terrain with a powered ankle prosthesis: A preliminary assessment.
    Shultz AH; Lawson BE; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5299-302. PubMed ID: 26737487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.
    Rábago CA; Aldridge Whitehead J; Wilken JM
    PLoS One; 2016; 11(12):e0166815. PubMed ID: 27977681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces.
    Nickel E; Sensinger J; Hansen A
    J Rehabil Res Dev; 2014; 51(5):803-14. PubMed ID: 25333672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are There Differences in Gait Mechanics in Patients With A Fixed Versus Mobile Bearing Total Ankle Arthroplasty? A Randomized Trial.
    Queen RM; Franck CT; Schmitt D; Adams SB
    Clin Orthop Relat Res; 2017 Oct; 475(10):2599-2606. PubMed ID: 28589334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gait retraining system using augmented-reality to modify footprint parameters: Effects on lower-limb sagittal-plane kinematics.
    Bennour S; Ulrich B; Legrand T; Jolles BM; Favre J
    J Biomech; 2018 Jan; 66():26-35. PubMed ID: 29137725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.
    Shepherd MK; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2375-2386. PubMed ID: 28885156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses.
    Russell Esposito E; Wilken JM
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1186-92. PubMed ID: 25440576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.