These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33352752)

  • 41. Polarization-Dependent Light Emission and Charge Creation in MoS
    Kwon S; Lee SY; Choi SH; Kang JW; Lee T; Song J; Lee SW; Cho CH; Kim KK; Yee KJ; Kim DW
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44088-44093. PubMed ID: 32892618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of Au Nanoparticle Arrays on Flexible Substrate for Tunable Localized Surface Plasmon Resonance.
    Tang Z; Wu J; Yu X; Hong R; Zu X; Lin X; Luo H; Lin W; Yi G
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9281-9288. PubMed ID: 33587614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays.
    Kim HJ; Lee SH; Upadhye AA; Ro I; Tejedor-Tejedor MI; Anderson MA; Kim WB; Huber GW
    ACS Nano; 2014 Oct; 8(10):10756-65. PubMed ID: 25268767
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review.
    Humbert C; Noblet T; Dalstein L; Busson B; Barbillon G
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30871058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating.
    Liu J; Zhang S; Ma Y; Shao J; Lu B; Chen Y
    Appl Opt; 2015 Mar; 54(9):2537-42. PubMed ID: 25968546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface plasmon-enhanced nanopillar photodetectors.
    Senanayake P; Hung CH; Shapiro J; Lin A; Liang B; Williams BS; Huffaker DL
    Nano Lett; 2011 Dec; 11(12):5279-83. PubMed ID: 22077757
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface plasmon-quantum dot coupling from arrays of nanoholes.
    Brolo AG; Kwok SC; Cooper MD; Moffitt MG; Wang CW; Gordon R; Riordon J; Kavanagh KL
    J Phys Chem B; 2006 Apr; 110(16):8307-13. PubMed ID: 16623513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection.
    Zhang Q; Wu L; Wong TI; Zhang J; Liu X; Zhou X; Bai P; Liedberg B; Wang Y
    Int J Nanomedicine; 2017; 12():2307-2314. PubMed ID: 28392689
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-enhanced coherent anti-Stokes Raman scattering based on coupled nanohole-slit arrays.
    Feng Y; Wang Y; Shao F; Meng L; Sun M
    Phys Chem Chem Phys; 2022 Jun; 24(22):13911-13921. PubMed ID: 35621057
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance enhancement of ultraviolet light emitting diode incorporating Al nanohole arrays.
    Jiang J; Guo W; Xu H; Yang Z; Guo S; Xie W; Chee KWA; Zeng Y; Ye J
    Nanotechnology; 2018 Nov; 29(45):45LT01. PubMed ID: 30160239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays.
    Gao H; Henzie J; Odom TW
    Nano Lett; 2006 Sep; 6(9):2104-8. PubMed ID: 16968034
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical Investigation on Multiple Resonant Modes of Double-Layer Plasmonic Grooves for Sensing Application.
    Chu S; Wang Q; Yu L; Gao H; Liang Y; Peng W
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32054024
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence.
    Takeuchi K; Yamamoto N
    Opt Express; 2011 Jun; 19(13):12365-74. PubMed ID: 21716474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable Au-Ag nanobowl arrays for size-selective plasmonic biosensing.
    Jana D; Lehnhoff E; Bruzas I; Robinson J; Lum W; Sagle L
    Analyst; 2016 Aug; 141(16):4870-8. PubMed ID: 27111025
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal deformation of gold nanostructures and its influence on surface plasmon resonance sensing.
    Kim HT; Pathak M; Rajasekaran K; Gupta AK; Yu M
    Nanoscale Adv; 2020 Mar; 2(3):1128-1137. PubMed ID: 36133066
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photonic crystal and plasmonic nanohole based label-free biodetection.
    Cetin AE; Topkaya SN
    Biosens Bioelectron; 2019 May; 132():196-202. PubMed ID: 30875631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions.
    Jayabal S; Pandikumar A; Lim HN; Ramaraj R; Sun T; Huang NM
    Analyst; 2015 Apr; 140(8):2540-55. PubMed ID: 25738185
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purcell-enhanced photoluminescence of few-layer MoS
    Kim H; Moon S; Kim J; Nam SH; Kim DH; Lee JS; Kim KH; Kang ESH; Ahn KJ; Kim T; Shin C; Suh YD
    Nanoscale; 2021 Mar; 13(10):5316-5323. PubMed ID: 33656502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.