These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33353027)

  • 1. Uncoupling Foam Fractionation and Foam Adsorption for Enhanced Biosurfactant Synthesis and Recovery.
    Blesken CC; Strümpfler T; Tiso T; Blank LM
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33353027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Cell-Surface Modification for Optimized Foam Fractionation.
    Blesken CC; Bator I; Eberlein C; Heipieper HJ; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():572892. PubMed ID: 33195133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor.
    Beuker J; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Mar; 6(1):11. PubMed ID: 26860613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of rhamnolipids by integrated foam adsorption in a bioreactor system.
    Anic I; Apolonia I; Franco P; Wichmann R
    AMB Express; 2018 Jul; 8(1):122. PubMed ID: 30043199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa.
    Heyd M; Franzreb M; Berensmeier S
    Biotechnol Prog; 2011; 27(3):706-16. PubMed ID: 21567991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating metabolic demand as an engineering strategy in
    Tiso T; Sabelhaus P; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Metab Eng Commun; 2016 Dec; 3():234-244. PubMed ID: 29142825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process.
    Bator I; Karmainski T; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():899. PubMed ID: 32850747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation.
    Sarachat T; Pornsunthorntawee O; Chavadej S; Rujiravanit R
    Bioresour Technol; 2010 Jan; 101(1):324-30. PubMed ID: 19716289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an external foam column for
    Treinen C; Claassen L; Hoffmann M; Lilge L; Henkel M; Hausmann R
    Front Bioeng Biotechnol; 2023; 11():1264787. PubMed ID: 38026897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel membrane stirrer system enables foam-free biosurfactant production.
    Bongartz P; Karmainski T; Meyer M; Linkhorst J; Tiso T; Blank LM; Wessling M
    Biotechnol Bioeng; 2023 May; 120(5):1269-1287. PubMed ID: 36705321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater.
    Dubey KV; Juwarkar AA; Singh SK
    Biotechnol Prog; 2005; 21(3):860-7. PubMed ID: 15932266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.
    Anic I; Nath A; Franco P; Wichmann R
    J Biotechnol; 2017 Sep; 258():181-189. PubMed ID: 28723386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using
    Tiso T; Ihling N; Kubicki S; Biselli A; Schonhoff A; Bator I; Thies S; Karmainski T; Kruth S; Willenbrink AL; Loeschcke A; Zapp P; Jupke A; Jaeger KE; Büchs J; Blank LM
    Front Bioeng Biotechnol; 2020; 8():976. PubMed ID: 32974309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scalable bubble-free membrane aerator for biosurfactant production.
    Bongartz P; Bator I; Baitalow K; Keller R; Tiso T; Blank LM; Wessling M
    Biotechnol Bioeng; 2021 Sep; 118(9):3545-3558. PubMed ID: 34002856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ downstream strategies for cost-effective bio/surfactant recovery.
    Najmi Z; Ebrahimipour G; Franzetti A; Banat IM
    Biotechnol Appl Biochem; 2018 Jul; 65(4):523-532. PubMed ID: 29297935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Bioprocess for the Production of Cyclic Lipopeptides Pseudofactins With Efficient Purification From Collected Foam.
    Biniarz P; Henkel M; Hausmann R; Łukaszewicz M
    Front Bioeng Biotechnol; 2020; 8():565619. PubMed ID: 33330412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids.
    Déziel E; Lépine F; Milot S; Villemur R
    Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid.
    Germer A; Tiso T; Müller C; Behrens B; Vosse C; Scholz K; Froning M; Hayen H; Blank LM
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.