BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33353134)

  • 1. The Degree of Cardiac Remodelling before Overload Relief Triggers Different Transcriptome and miRome Signatures during Reverse Remodelling (RR)-Molecular Signature Differ with the Extent of RR.
    Rodrigues PG; Miranda-Silva D; Li X; Sousa-Mendes C; Martins-Ferreira R; Elbeck Z; Leite-Moreira AF; Knöll R; Falcão-Pires I
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33353134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload.
    Miranda-Silva D; Gonçalves-Rodrigues P; Almeida-Coelho J; Hamdani N; Lima T; Conceição G; Sousa-Mendes C; Cláudia-Moura ; González A; Díez J; Linke WA; Leite-Moreira A; Falcão-Pires I
    Sci Rep; 2019 Feb; 9(1):2956. PubMed ID: 30814653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Reversible Changes Determine Diastolic Function Adaptations During Myocardial (Reverse) Remodeling.
    Miranda-Silva D; G Rodrigues P; Alves E; Rizo D; Fonseca ACRG; Lima T; Baganha F; Conceição G; Sousa C; Gonçalves A; Miranda I; Vasques-Nóvoa F; Magalhães J; Leite-Moreira A; Falcão-Pires I
    Circ Heart Fail; 2020 Nov; 13(11):e006170. PubMed ID: 33176457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery.
    Merino D; Villar AV; García R; Tramullas M; Ruiz L; Ribas C; Cabezudo S; Nistal JF; Hurlé MA
    Cardiovasc Res; 2016 Jun; 110(3):331-45. PubMed ID: 27068510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mouse model of reverse cardiac remodelling following banding-debanding of the ascending aorta.
    Bjørnstad JL; Skrbic B; Sjaastad I; Bjørnstad S; Christensen G; Tønnessen T
    Acta Physiol (Oxf); 2012 May; 205(1):92-102. PubMed ID: 21974781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gene therapeutic approach to inhibit calcium and integrin binding protein 1 ameliorates maladaptive remodelling in pressure overload.
    Grund A; Szaroszyk M; Döppner JK; Malek Mohammadi M; Kattih B; Korf-Klingebiel M; Gigina A; Scherr M; Kensah G; Jara-Avaca M; Gruh I; Martin U; Wollert KC; Gohla A; Katus HA; Müller OJ; Bauersachs J; Heineke J
    Cardiovasc Res; 2019 Jan; 115(1):71-82. PubMed ID: 29931050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial reverse remodeling after pressure unloading is associated with maintained cardiac mechanoenergetics in a rat model of left ventricular hypertrophy.
    Ruppert M; Korkmaz-Icöz S; Li S; Németh BT; Hegedűs P; Brlecic P; Mátyás C; Zorn M; Merkely B; Karck M; Radovits T; Szabó G
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H592-603. PubMed ID: 27342874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying Left Ventricular Reverse Remodeling by Aortic Debanding in Rodents.
    Goncalves-Rodrigues P; Miranda-Silva D; Leite-Moreira AF; Falcão-Pires I
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34338663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload.
    Kararigas G; Dworatzek E; Petrov G; Summer H; Schulze TM; Baczko I; Knosalla C; Golz S; Hetzer R; Regitz-Zagrosek V
    Eur J Heart Fail; 2014 Nov; 16(11):1160-7. PubMed ID: 25287281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incomplete structural reverse remodeling from late-stage left ventricular hypertrophy impedes the recovery of diastolic but not systolic dysfunction in rats.
    Ruppert M; Korkmaz-Icöz S; Loganathan S; Jiang W; Oláh A; Sayour AA; Barta BA; Karime C; Merkely B; Karck M; Radovits T; Szabó G
    J Hypertens; 2019 Jun; 37(6):1200-1212. PubMed ID: 31026245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the role of extracellular signal-regulated kinases 1 and 2 in volume overload-induced cardiac remodelling.
    Jochmann S; Elkenani M; Mohamed BA; Buchholz E; Lbik D; Binder L; Lorenz K; Shah AM; Hasenfuß G; Toischer K; Schnelle M
    ESC Heart Fail; 2019 Oct; 6(5):1015-1026. PubMed ID: 31322843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure overload by suprarenal aortic constriction in mice leads to left ventricular hypertrophy without c-Kit expression in cardiomyocytes.
    Nicks AM; Kesteven SH; Li M; Wu J; Chan AY; Naqvi N; Husain A; Feneley MP; Smith NJ; Iismaa SE; Graham RM
    Sci Rep; 2020 Sep; 10(1):15318. PubMed ID: 32948799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo cardiac role of migfilin during experimental pressure overload.
    Haubner BJ; Moik D; Schuetz T; Reiner MF; Voelkl JG; Streil K; Bader K; Zhao L; Scheu C; Mair J; Pachinger O; Metzler B
    Cardiovasc Res; 2015 Jun; 106(3):398-407. PubMed ID: 25852081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen isoform shift during the early phase of reverse left ventricular remodelling after relief of pressure overload.
    Bjørnstad JL; Sjaastad I; Nygård S; Hasic A; Ahmed MS; Attramadal H; Finsen AV; Christensen G; Tønnessen T
    Eur Heart J; 2011 Jan; 32(2):236-45. PubMed ID: 20525982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.
    Zhang M; Mongue-Din H; Martin D; Catibog N; Smyrnias I; Zhang X; Yu B; Wang M; Brandes RP; Schröder K; Shah AM
    Cardiovasc Res; 2018 Mar; 114(3):401-408. PubMed ID: 29040462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling.
    Vigil-Garcia M; Demkes CJ; Eding JEC; Versteeg D; de Ruiter H; Perini I; Kooijman L; Gladka MM; Asselbergs FW; Vink A; Harakalova M; Bossu A; van Veen TAB; Boogerd CJ; van Rooij E
    Cardiovasc Res; 2021 May; 117(6):1532-1545. PubMed ID: 32717063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload.
    Beetz N; Rommel C; Schnick T; Neumann E; Lother A; Monroy-Ordonez EB; Zeeb M; Preissl S; Gilsbach R; Melchior-Becker A; Rylski B; Stoll M; Schaefer L; Beyersdorf F; Stiller B; Hein L
    J Mol Cell Cardiol; 2016 Dec; 101():145-155. PubMed ID: 27789290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tenascin-C promotes chronic pressure overload-induced cardiac dysfunction, hypertrophy and myocardial fibrosis.
    Podesser BK; Kreibich M; Dzilic E; Santer D; Förster L; Trojanek S; Abraham D; Krššák M; Klein KU; Tretter EV; Kaun C; Wojta J; Kapeller B; Gonçalves IF; Trescher K; Kiss A
    J Hypertens; 2018 Apr; 36(4):847-856. PubMed ID: 29283973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state.
    Sun M; Chen M; Dawood F; Zurawska U; Li JY; Parker T; Kassiri Z; Kirshenbaum LA; Arnold M; Khokha R; Liu PP
    Circulation; 2007 Mar; 115(11):1398-407. PubMed ID: 17353445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway.
    Xu M; Xue RQ; Lu Y; Yong SY; Wu Q; Cui YL; Zuo XT; Yu XJ; Zhao M; Zang WJ
    Cardiovasc Res; 2019 Mar; 115(3):530-545. PubMed ID: 30165480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.