These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 33353199)

  • 1. Removal of Nitrogen and Phosphorus from Thickening Effluent of an Urban Wastewater Treatment Plant by an Isolated Green Microalga.
    Baldisserotto C; Demaria S; Accoto O; Marchesini R; Zanella M; Benetti L; Avolio F; Maglie M; Ferroni L; Pancaldi S
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33353199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Urban Wastewater Treatment through Isolated
    Baldisserotto C; Demaria S; Arcidiacono M; Benà E; Giacò P; Marchesini R; Ferroni L; Benetti L; Zanella M; Benini A; Pancaldi S
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced treatment of secondary effluent from wastewater treatment plant by a newly isolated microalga
    Wang P; Shao Y; Geng Y; Mushtaq R; Yang W; Li M; Sun X; Wang H; Chen G
    Front Microbiol; 2023; 14():1111468. PubMed ID: 36778876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris.
    Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA
    Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of the Acidophilic Microalgae
    di Cicco MR; Palmieri M; Altieri S; Ciniglia C; Lubritto C
    Int J Environ Res Public Health; 2021 Feb; 18(5):. PubMed ID: 33652560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.
    Cheng T; Wei CH; Leiknes T
    Bioresour Technol; 2017 Oct; 241():360-368. PubMed ID: 28577485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms.
    Boelee NC; Temmink H; Janssen M; Buisman CJ; Wijffels RH
    Water Res; 2011 Nov; 45(18):5925-33. PubMed ID: 21940029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1.
    Chen Z; Shao S; He Y; Luo Q; Zheng M; Zheng M; Chen B; Wang M
    Bioresour Technol; 2020 Apr; 302():122806. PubMed ID: 31982846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment.
    Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M
    Crit Rev Biotechnol; 2018 Dec; 38(8):1244-1260. PubMed ID: 29768936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation pathways of erythromycin and biochemical responses related to algal growth and lipid synthesis in a microalga-effluent system.
    Wang X; Dou X; Wu J; Meng F
    Environ Res; 2021 Apr; 195():110873. PubMed ID: 33582131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response.
    Nagarajan D; Lee DJ; Varjani S; Lam SS; Allakhverdiev SI; Chang JS
    Sci Total Environ; 2022 Nov; 845():157110. PubMed ID: 35787906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp.
    Wang C; Yu X; Lv H; Yang J
    J Environ Biol; 2013 Apr; 34(2 Spec No):421-5. PubMed ID: 24620613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production of biomass and lipids by
    Toyama T; Hanaoka T; Yamada K; Suzuki K; Tanaka Y; Morikawa M; Mori K
    Biotechnol Biofuels; 2019; 12():205. PubMed ID: 31695747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of domestic wastewater as a water source of Tetradesmusobliquus PF3 for the biological removal of nitric oxide.
    Ma S; Yu Y; Cui H; Li J; Feng Y
    Environ Pollut; 2020 Jul; 262():114243. PubMed ID: 32443218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Dec; 66():53-62. PubMed ID: 25189477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture.
    Delgadillo-Mirquez L; Lopes F; Taidi B; Pareau D
    Biotechnol Rep (Amst); 2016 Sep; 11():18-26. PubMed ID: 28352536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.
    Åkerström AM; Mortensen LM; Rusten B; Gislerød HR
    J Environ Manage; 2014 Nov; 144():118-24. PubMed ID: 24935023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work.
    Lv J; Feng J; Liu Q; Xie S
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28045437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized oleaginous microalgae as effective two-phase purify unit for biogas and anaerobic digester effluent coupling with lipid production.
    Srinuanpan S; Cheirsilp B; Boonsawang P; Prasertsan P
    Bioresour Technol; 2019 Jun; 281():149-157. PubMed ID: 30818266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.