BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 33353838)

  • 41. Developing Practical Therapeutic Strategies that Target Protein SUMOylation.
    Cox OF; Huber PW
    Curr Drug Targets; 2019; 20(9):960-969. PubMed ID: 30362419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy.
    Nawrocki ST; Griffin P; Kelly KR; Carew JS
    Expert Opin Investig Drugs; 2012 Oct; 21(10):1563-73. PubMed ID: 22799561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Promoting tumorigenesis in nasopharyngeal carcinoma, NEDD8 serves as a potential theranostic target.
    Xie P; Yang JP; Cao Y; Peng LX; Zheng LS; Sun R; Meng DF; Wang MY; Mei Y; Qiang YY; Cao L; Xiang YQ; Luo DH; Yun JP; Huang BJ; Jia LJ; Qian CN
    Cell Death Dis; 2017 Jun; 8(6):e2834. PubMed ID: 28569775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of new SUMO activating enzyme 1 inhibitors using virtual screening and scaffold hopping.
    Kumar A; Ito A; Hirohama M; Yoshida M; Zhang KY
    Bioorg Med Chem Lett; 2016 Feb; 26(4):1218-23. PubMed ID: 26810265
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeting the protein ubiquitination machinery in melanoma by the NEDD8-activating enzyme inhibitor pevonedistat (MLN4924).
    Wong KM; Micel LN; Selby HM; Tan AC; Pitts TM; Bagby SM; Spreafico A; Klauck PJ; Blakemore SJ; Smith PF; McDonald A; Berger A; Tentler JJ; Eckhardt SG
    Invest New Drugs; 2017 Feb; 35(1):11-25. PubMed ID: 27783255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SUMO proteases as potential targets for cancer therapy.
    Bialik P; Woźniak K
    Postepy Hig Med Dosw (Online); 2017 Dec; 71(0):997-1004. PubMed ID: 29225200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells.
    Gu Y; Kaufman JL; Bernal L; Torre C; Matulis SM; Harvey RD; Chen J; Sun SY; Boise LH; Lonial S
    Blood; 2014 May; 123(21):3269-76. PubMed ID: 24713927
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional Crosstalk between the PP2A and SUMO Pathways Revealed by Analysis of STUbL Suppressor, razor 1-1.
    Nie M; Arner E; Prudden J; Schaffer L; Head S; Boddy MN
    PLoS Genet; 2016 Jul; 12(7):e1006165. PubMed ID: 27398807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting SUMOylation cascade for diabetes management.
    Sireesh D; Bhakkiyalakshmi E; Ramkumar KM; Rathinakumar S; Jennifer PS; Rajaguru P; Paulmurugan R
    Curr Drug Targets; 2014; 15(12):1094-106. PubMed ID: 25230117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The SUMO Pathway in Hematomalignancies and Their Response to Therapies.
    Boulanger M; Paolillo R; Piechaczyk M; Bossis G
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31405039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MRFAP1 plays a protective role in neddylation inhibitor MLN4924-mediated gastric cancer cell death.
    Hu L; Bai ZG; Ma XM; Bai N; Zhang ZT
    Eur Rev Med Pharmacol Sci; 2018 Dec; 22(23):8273-8280. PubMed ID: 30556867
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recombinant reconstitution of sumoylation reactions in vitro.
    Flotho A; Werner A; Winter T; Frank AS; Ehret H; Melchior F
    Methods Mol Biol; 2012; 832():93-110. PubMed ID: 22350878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The SUMO-specific protease family regulates cancer cell radiosensitivity.
    Hu C; Jiang X
    Biomed Pharmacother; 2019 Jan; 109():66-70. PubMed ID: 30396093
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SUMO in cancer--wrestlers wanted.
    Alarcon-Vargas D; Ronai Z
    Cancer Biol Ther; 2002; 1(3):237-42. PubMed ID: 12432270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins.
    Cuijpers SAG; Willemstein E; Vertegaal ACO
    Mol Cell Proteomics; 2017 Dec; 16(12):2281-2295. PubMed ID: 28951443
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SUMO in Drosophila Development.
    Cao J; Courey AJ
    Adv Exp Med Biol; 2017; 963():249-257. PubMed ID: 28197917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer.
    Eifler K; Vertegaal ACO
    Trends Biochem Sci; 2015 Dec; 40(12):779-793. PubMed ID: 26601932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein interactions in the sumoylation cascade: lessons from X-ray structures.
    Tang Z; Hecker CM; Scheschonka A; Betz H
    FEBS J; 2008 Jun; 275(12):3003-15. PubMed ID: 18492068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of 2',3',4'-trihydroxyflavone (2-D08), an inhibitor of protein sumoylation.
    Kim YS; Keyser SG; Schneekloth JS
    Bioorg Med Chem Lett; 2014 Feb; 24(4):1094-7. PubMed ID: 24468414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mps1 is SUMO-modified during the cell cycle.
    Restuccia A; Yang F; Chen C; Lu L; Dai W
    Oncotarget; 2016 Jan; 7(3):3158-70. PubMed ID: 26675261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.