BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 33354165)

  • 1. Recent progress in the conversion of biomass wastes into functional materials for value-added applications.
    Zhou C; Wang Y
    Sci Technol Adv Mater; 2020 Dec; 21(1):787-804. PubMed ID: 33354165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progresses in Pyrolysis of Plastic Packaging Wastes and Biomass Materials for Conversion of High-Value Carbons: A Review.
    Cheng Y; Wang J; Fang C; Du Y; Su J; Chen J; Zhang Y
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste valorization by biotechnological conversion into added value products.
    Liguori R; Amore A; Faraco V
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6129-47. PubMed ID: 23749120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products.
    Yu S; Sun J; Shi Y; Wang Q; Wu J; Liu J
    Environ Sci Ecotechnol; 2021 Jan; 5():100077. PubMed ID: 36158608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling and reuse of industrial wastes in Taiwan.
    Wei MS; Huang KH
    Waste Manag; 2001; 21(1):93-7. PubMed ID: 11150138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Liquid-To-Solid" Conversion of Biomass Wastes Enhanced by Uniform Nitrogen Doping for the Preparation of High-Value-Added Carbon Materials for Energy Storage with Superior Characteristics.
    Chernysheva DV; Sidash EA; Konstantinov MS; Klushin VA; Tokarev DV; Andreeva VE; Kolesnikov EA; Kaichev VV; Smirnova NV; Ananikov VP
    ChemSusChem; 2023 Apr; 16(8):e202202065. PubMed ID: 36651314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tribological Performance of Composites Reinforced with the Agricultural, Industrial and Post-Consumer Wastes: A Review.
    Sydow Z; Sydow M; Wojciechowski Ł; Bieńczak K
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions.
    Rodríguez Couto S
    Biotechnol J; 2008 Jul; 3(7):859-70. PubMed ID: 18543242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.
    Bharathiraja S; Suriya J; Krishnan M; Manivasagan P; Kim SK
    Adv Food Nutr Res; 2017; 80():125-148. PubMed ID: 28215322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review.
    Liu H; Long J; Zhang K; Li M; Zhao D; Song D; Zhang W
    Sci Total Environ; 2024 Jun; 946():174180. PubMed ID: 38936738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-Derived Carbon Materials for Electrochemical Energy Storage.
    Bai YL; Zhang CC; Rong F; Guo ZX; Wang KX
    Chemistry; 2024 Apr; 30(23):e202304157. PubMed ID: 38270279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-benefit analysis for recycling of agricultural wastes in Taiwan.
    Hsu E
    Waste Manag; 2021 Feb; 120():424-432. PubMed ID: 33132002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.
    Hwang IH; Matsuto T; Tanaka N; Sasaki Y; Tanaami K
    Waste Manag; 2007; 27(9):1155-66. PubMed ID: 16920347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review.
    Yap YW; Mahmed N; Norizan MN; Abd Rahim SZ; Ahmad Salimi MN; Abdul Razak K; Mohamad IS; Abdullah MMA; Mohamad Yunus MY
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects.
    Cao L; Zhang C; Chen H; Tsang DCW; Luo G; Zhang S; Chen J
    Bioresour Technol; 2017 Dec; 245(Pt A):1184-1193. PubMed ID: 28893498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reutilization of discarded biomass for preparing functional polymer materials.
    Wang J; Qian W; He Y; Xiong Y; Song P; Wang RM
    Waste Manag; 2017 Jul; 65():11-21. PubMed ID: 28431803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review.
    Horue M; Rivero Berti I; Cacicedo ML; Castro GR
    Bioresour Technol; 2021 Nov; 340():125671. PubMed ID: 34333348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current understanding in conversion and application of tea waste biomass: A review.
    Guo S; Kumar Awasthi M; Wang Y; Xu P
    Bioresour Technol; 2021 Oct; 338():125530. PubMed ID: 34271498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eco-friendly geopolymer prepared from solid wastes: A critical review.
    Ren B; Zhao Y; Bai H; Kang S; Zhang T; Song S
    Chemosphere; 2021 Mar; 267():128900. PubMed ID: 33234306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.