These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3335431)

  • 41. Fine structure of the retina and pigment epithelium in the creek chub, Semotilus atromaculatus (Cyprinidae, Teleostei).
    Collin SP; Collin HB; Ali MA
    Histol Histopathol; 1996 Jan; 11(1):41-53. PubMed ID: 8720447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphogenesis of the different types of photoreceptors of the chicken (Gallus domesticus) retina and the effect of amblyopia in neonatal chicken.
    Wai MS; Lorke DE; Kung LS; Yew DT
    Microsc Res Tech; 2006 Feb; 69(2):99-107. PubMed ID: 16456833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate.
    Organisciak DT; Darrow RM; Jiang YL; Blanks JC
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mouse photoreceptor synaptic ribbons lose and regain material in response to illumination changes.
    Spiwoks-Becker I; Glas M; Lasarzik I; Vollrath L
    Eur J Neurosci; 2004 Mar; 19(6):1559-71. PubMed ID: 15066152
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane addition to photoreceptor outer segments: progressive reduction in the stimulatory effect of light with increased temperature.
    Hollyfield JG
    Invest Ophthalmol Vis Sci; 1979 Sep; 18(9):977-81. PubMed ID: 314436
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.
    Li ZY; Jacobson SG; Milam AH
    Exp Eye Res; 1994 Apr; 58(4):397-408. PubMed ID: 7925677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fine structure of the retinal photoreceptors of the tiger salamander (Ambystoma tigrinum).
    Braekevelt CR
    Histol Histopathol; 1993 Apr; 8(2):265-72. PubMed ID: 8490253
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nutritional manipulation of primate retinas. IV. Effects of n--3 fatty acids, lutein, and zeaxanthin on S-cones and rods in the foveal region.
    Leung IY; Sandstrom MM; Zucker CL; Neuringer M; Max Snodderly D
    Exp Eye Res; 2005 Nov; 81(5):513-29. PubMed ID: 15916761
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Failure of vitamin E to protect the retina against damage resulting from bright cyclic light exposure.
    Katz ML; Eldred GE
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):29-36. PubMed ID: 2912912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Morphological adaptations of the eyes of vertebrates: retinal trophism and the response to environmental stimuli].
    Puzzolo D
    Arch Ital Anat Embriol; 1989; 94(4):317-78. PubMed ID: 2701260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of bleaching on the width and index of refraction of goldfish rod and cone outer segment fragments.
    Enoch JM; Hudson DK; Lakshminarayanan V; Scandrett J; Bernstein M
    Optom Vis Sci; 1990 Aug; 67(8):600-5. PubMed ID: 2216326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changing the light intensity of the visual environment results in large differences in numbers of synapses and in photoreceptor size in the retina of the young adult rat.
    Case CP; Plummer CJ
    Neuroscience; 1993 Aug; 55(3):653-66. PubMed ID: 8413928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of continuous light and darkness on the eyes of the troglobitic salamander Typhlotriton spelaeus.
    Besharse JC; Brandon RA
    J Morphol; 1976 Aug; 149(4):527-46. PubMed ID: 966284
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation of photoreceptors in larval and adult goldfish.
    Johns PR
    J Neurosci; 1982 Feb; 2(2):178-98. PubMed ID: 7062105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy.
    SIDMAN RL
    J Biophys Biochem Cytol; 1957 Jan; 3(1):15-30. PubMed ID: 13416308
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiologic and anatomic development of the photoreceptors of normally-reared and dark-reared rabbits.
    Tucker GS; Hamasaki DI; Labbie A; Bradford N
    Exp Brain Res; 1982; 48(2):263-71. PubMed ID: 7173362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of restricted spectral rearing on the development of zebrafish retinal physiology.
    Dixon LJ; McDowell AL; Houchins JD; Bilotta J
    Doc Ophthalmol; 2004 Jul; 109(1):17-33. PubMed ID: 15675197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Constant dark-rearing effects on visual adaptation of the zebrafish ERG.
    Saszik S; Bilotta J
    Int J Dev Neurosci; 2001 Nov; 19(7):611-9. PubMed ID: 11705665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extended exposure to continuous low intensity light abolishes the photosensitivity of retinal dopamine neurons.
    Morgan WW; Kamp CW
    Life Sci; 1983 Oct; 33(14):1419-26. PubMed ID: 6621247
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Morphological findings during retinal development and maturation in hereditary rod-cone degeneration in Abyssinian cats.
    Narfström K; Nilsson SE
    Exp Eye Res; 1989 Oct; 49(4):611-28. PubMed ID: 2806428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.