These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33354488)

  • 1. Mal-Light: Enhancing Lysine Malonylation Sites Prediction Problem Using Evolutionary-based Features.
    Ahmad W; Arafat E; Taherzadeh G; Sharma A; Dipta SR; Dehzangi A; Shatabda S
    IEEE Access; 2020; 8():77888-77902. PubMed ID: 33354488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SEMal: Accurate protein malonylation site predictor using structural and evolutionary information.
    Dipta SR; Taherzadeh G; Ahmad MW; Arafat ME; Shatabda S; Dehzangi A
    Comput Biol Med; 2020 Oct; 125():104022. PubMed ID: 33022522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features.
    Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y
    J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.
    Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD
    Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites.
    Al-Barakati H; Thapa N; Hiroto S; Roy K; Newman RH; Kc D
    Comput Struct Biotechnol J; 2020; 18():852-860. PubMed ID: 32322367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iProtGly-SS: A Tool to Accurately Predict Protein Glycation Site Using Structural-Based Features.
    Dehzangi I; Sharma A; Shatabda S
    Methods Mol Biol; 2022; 2499():125-134. PubMed ID: 35696077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid feature extraction scheme for efficient malonylation site prediction.
    Sorkhi AG; Pirgazi J; Ghasemi V
    Sci Rep; 2022 Apr; 12(1):5756. PubMed ID: 35388017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences.
    Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection.
    Xu Y; Ding YX; Ding J; Wu LY; Xue Y
    Sci Rep; 2016 Dec; 6():38318. PubMed ID: 27910954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.
    Qian L; Nie L; Chen M; Liu P; Zhu J; Zhai L; Tao SC; Cheng Z; Zhao Y; Tan M
    J Proteome Res; 2016 Jun; 15(6):2060-71. PubMed ID: 27183143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating hybrid models into lysine malonylation sites prediction on mammalian and plant proteins.
    Chung CR; Chang YP; Hsu YL; Chen S; Wu LC; Horng JT; Lee TY
    Sci Rep; 2020 Jun; 10(1):10541. PubMed ID: 32601280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Lysine Malonylation Sites Based on Pseudo Amino Acid.
    Xiang Q; Feng K; Liao B; Liu Y; Huang G
    Comb Chem High Throughput Screen; 2017; 20(7):622-628. PubMed ID: 28292251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic analysis of the lysine malonylome in common wheat.
    Liu J; Wang G; Lin Q; Liang W; Gao Z; Mu P; Li G; Song L
    BMC Genomics; 2018 Mar; 19(1):209. PubMed ID: 29558883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features.
    Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T
    J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Method for Identifying Malonylation Sites by Using Random Forest Algorithm.
    Wang S; Li J; Sun X; Zhang YH; Huang T; Cai Y
    Comb Chem High Throughput Screen; 2020; 23(4):304-312. PubMed ID: 30588879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SumSec: Accurate Prediction of Sumoylation Sites Using Predicted Secondary Structure.
    Dehzangi A; López Y; Taherzadeh G; Sharma A; Tsunoda T
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites.
    Chen Z; He N; Huang Y; Qin WT; Liu X; Li L
    Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):451-459. PubMed ID: 30639696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.