BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3335481)

  • 1. Gene organization and structure of the Streptomyces lividans gal operon.
    Adams CW; Fornwald JA; Schmidt FJ; Rosenberg M; Brawner ME
    J Bacteriol; 1988 Jan; 170(1):203-12. PubMed ID: 3335481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products.
    Vaillancourt K; Moineau S; Frenette M; Lessard C; Vadeboncoeur C
    J Bacteriol; 2002 Feb; 184(3):785-93. PubMed ID: 11790749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus.
    Vaughan EE; van den Bogaard PT; Catzeddu P; Kuipers OP; de Vos WM
    J Bacteriol; 2001 Feb; 183(4):1184-94. PubMed ID: 11157930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway.
    Grossiord BP; Luesink EJ; Vaughan EE; Arnaud A; de Vos WM
    J Bacteriol; 2003 Feb; 185(3):870-8. PubMed ID: 12533462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles.
    de Vin F; Rådström P; Herman L; De Vuyst L
    Appl Environ Microbiol; 2005 Jul; 71(7):3659-67. PubMed ID: 16000774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts.
    Hittinger CT; Rokas A; Carroll SB
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14144-9. PubMed ID: 15381776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crotonylation of key metabolic enzymes regulates carbon catabolite repression in Streptomyces roseosporus.
    Sun CF; Xu WF; Zhao QW; Luo S; Chen XA; Li YQ; Mao XM
    Commun Biol; 2020 Apr; 3(1):192. PubMed ID: 32332843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of the colonic deposition of free hemoglobin-α chain: a previously unknown tissue by-product in inflammatory bowel disease.
    Myers JN; Schäffer MW; Korolkova OY; Williams AD; Gangula PR; M'Koma AE
    Inflamm Bowel Dis; 2014 Sep; 20(9):1530-47. PubMed ID: 25078150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds.
    Fredrickson JK; Brockman FJ; Workman DJ; Li SW; Stevens TO
    Appl Environ Microbiol; 1991 Mar; 57(3):796-803. PubMed ID: 16348445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2).
    Bertram R; Schlicht M; Mahr K; Nothaft H; Saier MH; Titgemeyer F
    J Bacteriol; 2004 Mar; 186(5):1362-73. PubMed ID: 14973030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of recombinant alpha-galactosidases in Thermus thermophilus.
    Fridjonsson O; Mattes R
    Appl Environ Microbiol; 2001 Sep; 67(9):4192-8. PubMed ID: 11526023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic factor for age-related cataract: identification and characterization of a novel galactokinase variant, "Osaka," in Asians.
    Okano Y; Asada M; Fujimoto A; Ohtake A; Murayama K; Hsiao KJ; Choeh K; Yang Y; Cao Q; Reichardt JK; Niihira S; Imamura T; Yamano T
    Am J Hum Genet; 2001 Apr; 68(4):1036-42. PubMed ID: 11231902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A complex insertion sequence cluster at a point of interaction between the linear plasmid SCP1 and the linear chromosome of Streptomyces coelicolor A3(2).
    Yamasaki M; Miyashita K; Cullum J; Kinashi H
    J Bacteriol; 2000 Jun; 182(11):3104-10. PubMed ID: 10809688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence.
    Fry BN; Feng S; Chen YY; Newell DG; Coloe PJ; Korolik V
    Infect Immun; 2000 May; 68(5):2594-601. PubMed ID: 10768949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases.
    Bork P; Sander C; Valencia A
    Protein Sci; 1993 Jan; 2(1):31-40. PubMed ID: 8382990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete nucleotide sequence and molecular characterization of ViaB region encoding Vi antigen in Salmonella typhi.
    Hashimoto Y; Li N; Yokoyama H; Ezaki T
    J Bacteriol; 1993 Jul; 175(14):4456-65. PubMed ID: 8331073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ccrA1: a mutation in Streptomyces coelicolor that affects the control of catabolite repression.
    Ingram C; Delic I; Westpheling J
    J Bacteriol; 1995 Jun; 177(12):3579-86. PubMed ID: 7768869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides) ruminicola 23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria.
    Whitehead TR
    Curr Microbiol; 1993 Jul; 27(1):27-33. PubMed ID: 7763664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mutation in the Neisseria gonorrhoeae rfaD homolog results in altered lipooligosaccharide expression.
    Drazek ES; Stein DC; Deal CD
    J Bacteriol; 1995 May; 177(9):2321-7. PubMed ID: 7730260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a complex operator for galP1, the glucose-sensitive, galactose-dependent promoter of the Streptomyces galactose operon.
    Mattern SG; Brawner ME; Westpheling J
    J Bacteriol; 1993 Mar; 175(5):1213-20. PubMed ID: 7680340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.