BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 33354819)

  • 1. Phytochrome B inhibits darkness-induced hypocotyl adventitious root formation by stabilizing IAA14 and suppressing ARF7 and ARF19.
    Li QQ; Zhang Z; Wang YL; Zhong LY; Chao ZF; Gao YQ; Han ML; Xu L; Chao DY
    Plant J; 2021 Mar; 105(6):1689-1702. PubMed ID: 33354819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation.
    Zeng Y; Verstraeten I; Trinh HK; Lardon R; Schotte S; Olatunji D; Heugebaert T; Stevens C; Quareshy M; Napier R; Nastasi SP; Costa A; De Rybel B; Bellini C; Beeckman T; Vanneste S; Geelen D
    New Phytol; 2023 Dec; 240(5):1883-1899. PubMed ID: 37787103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root branching toward water involves posttranslational modification of transcription factor ARF7.
    Orosa-Puente B; Leftley N; von Wangenheim D; Banda J; Srivastava AK; Hill K; Truskina J; Bhosale R; Morris E; Srivastava M; Kümpers B; Goh T; Fukaki H; Vermeer JEM; Vernoux T; Dinneny JR; French AP; Bishopp A; Sadanandom A; Bennett MJ
    Science; 2018 Dec; 362(6421):1407-1410. PubMed ID: 30573626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermal Phytochrome B Inhibits Hypocotyl Negative Gravitropism Non-Cell-Autonomously.
    Kim J; Song K; Park E; Kim K; Bae G; Choi G
    Plant Cell; 2016 Nov; 28(11):2770-2785. PubMed ID: 27758895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NBR1-mediated selective autophagy of ARF7 modulates root branching.
    Ebstrup E; Ansbøl J; Paez-Garcia A; Culp H; Chevalier J; Clemmens P; Coll NS; Moreno-Risueno MA; Rodriguez E
    EMBO Rep; 2024 Jun; 25(6):2571-2591. PubMed ID: 38684906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAUR15 Promotes Lateral and Adventitious Root Development via Activating H
    Yin H; Li M; Lv M; Hepworth SR; Li D; Ma C; Li J; Wang SM
    Plant Physiol; 2020 Oct; 184(2):837-851. PubMed ID: 32651188
    [No Abstract]   [Full Text] [Related]  

  • 7. An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation.
    Lilley JL; Gee CW; Sairanen I; Ljung K; Nemhauser JL
    Plant Physiol; 2012 Dec; 160(4):2261-70. PubMed ID: 23073695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypocotyl adventitious root organogenesis differs from lateral root development.
    Verstraeten I; Schotte S; Geelen D
    Front Plant Sci; 2014; 5():495. PubMed ID: 25324849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation by WRKY23 and derepression by removal of bHLH041 coordinately establish callus pluripotency in Arabidopsis regeneration.
    Xu C; Chang P; Guo S; Yang X; Liu X; Sui B; Yu D; Xin W; Hu Y
    Plant Cell; 2023 Dec; 36(1):158-173. PubMed ID: 37804093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin biosynthesis, transport, and response directly attenuate hydrotropism in the latter stages to fine-tune root growth direction in Arabidopsis.
    Akita K; Miyazawa Y
    Physiol Plant; 2023; 175(5):e14051. PubMed ID: 37882259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pivotal role of LBD16 in root and root-like organ initiation.
    Liu W; Yu J; Ge Y; Qin P; Xu L
    Cell Mol Life Sci; 2018 Sep; 75(18):3329-3338. PubMed ID: 29943076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correct plasma membrane anchoring is key to PHYTOCHROME KINASE SUBSTRATE function in hypocotyl light responses.
    Gorelova V
    Plant Cell; 2023 Jun; 35(7):2442-2444. PubMed ID: 37002820
    [No Abstract]   [Full Text] [Related]  

  • 13. Cortical Aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding.
    Shimamura S; Yoshida S; Mochizuki T
    Ann Bot; 2007 Dec; 100(7):1431-9. PubMed ID: 17921518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IRR1 contributes to de novo root regeneration from Arabidopsis thaliana leaf explants.
    Yan J; Song Y; Li M; Hu T; Hsu YF; Zheng M
    Physiol Plant; 2023; 175(5):e14047. PubMed ID: 37882290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated analysis of transcriptomic and proteomic data reveals novel regulators of soybean (
    Zhang X; Shen Z; Sun X; Chen M; Zhang N
    Funct Plant Biol; 2023 Dec; 50(12):1086-1098. PubMed ID: 37866377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Tracheary Elements Types in Mature Hypocotyl of Arabidopsis thaliana.
    Brunot-Garau P; Úrbez C; Vera-Sirera F
    Methods Mol Biol; 2024; 2722():131-137. PubMed ID: 37897605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions.
    Takahashi H; Xiaohua Q; Shimamura S; Yanagawa A; Hiraga S; Nakazono M
    Ann Bot; 2018 Mar; 121(4):723-732. PubMed ID: 29370345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first intron of ARF7 is required for expression in root tips.
    Han J; Welch T; Voß U; Vernoux T; Bhosale R; Bishopp A
    iScience; 2024 Jun; 27(6):109936. PubMed ID: 38832021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of adventitious sprouting in short-lived monocarpic herbs: a field study of 22 weedy species.
    Malíková L; Smilauer P; Klimesová J
    Ann Bot; 2010 Jun; 105(6):905-12. PubMed ID: 20356953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARF19 Condensation in the Arabidopsis Stomatal Lineage.
    Kuan C; Strader LC; Morffy N
    MicroPubl Biol; 2023; 2023():. PubMed ID: 36814574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.