These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3335537)

  • 1. The pH dependence of red cell membrane transport of titratable anions studied by NMR spectroscopy.
    Labotka RJ; Omachi A
    J Biol Chem; 1988 Jan; 263(3):1166-73. PubMed ID: 3335537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pH dependence of red cell membrane transport of titratible anions. An NMR study.
    Labotka RJ; Omachi A
    Biomed Biochim Acta; 1987; 46(2-3):S60-4. PubMed ID: 3593319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte anion transport of phosphate analogs.
    Labotka RJ; Omachi A
    J Biol Chem; 1987 Jan; 262(1):305-11. PubMed ID: 3793727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phosphate-analogue probe of red cell pH using phosphorus-31 nuclear magnetic resonance.
    Labotka RJ; Kleps RA
    Biochemistry; 1983 Dec; 22(26):6089-95. PubMed ID: 6661429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temperature dependence of human erythrocyte transport of phosphate, phosphite and hypophosphite.
    Galanter WL; Labotka RJ
    Biochim Biophys Acta; 1990 Aug; 1027(1):65-71. PubMed ID: 2397221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P and 35Cl nuclear magnetic resonance measurements of anion transport in human erythrocytes.
    Brauer M; Spread CY; Reithmeier RA; Sykes BD
    J Biol Chem; 1985 Sep; 260(21):11643-50. PubMed ID: 4044573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions.
    Schnell KF; Besl E; von der Mosel R
    J Membr Biol; 1981; 61(3):173-92. PubMed ID: 7277470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein.
    Legrum B; Passow H
    Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of the titratable carrier for anion exchange in erythrocytes.
    Gunn RB; Fröhlich O
    Ann N Y Acad Sci; 1980; 341():384-93. PubMed ID: 6249152
    [No Abstract]   [Full Text] [Related]  

  • 11. Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis.
    Price WS; Kuchel PW
    NMR Biomed; 1990 Apr; 3(2):59-63. PubMed ID: 2390454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ATP, intracellular calcium and the anion exchange inhibitor DIDS on conductive anion fluxes across the human red cell membrane.
    Bennekou P; Stampe P
    Biochim Biophys Acta; 1988 Jul; 942(1):179-85. PubMed ID: 2454663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.
    Kummerow D; Hamann J; Browning JA; Wilkins R; Ellory JC; Bernhardt I
    J Membr Biol; 2000 Aug; 176(3):207-16. PubMed ID: 10931972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35 Cl NMR study.
    Falke JJ; Chan SI
    J Biol Chem; 1985 Aug; 260(17):9537-44. PubMed ID: 4019484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.
    Becker BF; Duhm J
    J Physiol; 1978 Sep; 282():149-68. PubMed ID: 31458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HCO3-/Cl- exchange across the human erythrocyte membrane: effects of pH and temperature.
    Obaid AL; Crandall ED
    J Membr Biol; 1979 Oct; 50(1):23-41. PubMed ID: 41100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and interactions of anions and protons in the red blood cell membrane.
    Wieth JO; Brahm J; Funder J
    Ann N Y Acad Sci; 1980; 341():394-418. PubMed ID: 6249153
    [No Abstract]   [Full Text] [Related]  

  • 18. The human erythrocyte anion transport protein, band 3. Characterization of exofacial alkaline titratable groups involved in anion binding/translocation.
    Bjerrum PJ
    J Gen Physiol; 1992 Aug; 100(2):301-39. PubMed ID: 1402784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants of substrate specificity of the erythrocyte anion transporter.
    Galanter WL; Hakimian M; Labotka RJ
    Am J Physiol; 1993 Oct; 265(4 Pt 1):C918-26. PubMed ID: 8238316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.