These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 33355472)
1. Pump-Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion. Clinger JA; Chen E; Kliger DS; Phillips GN J Phys Chem B; 2021 Jan; 125(1):202-210. PubMed ID: 33355472 [TBL] [Abstract][Full Text] [Related]
2. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149 [TBL] [Abstract][Full Text] [Related]
3. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES; Walker JM; Phillips GN; Vierstra RD Structure; 2013 Jan; 21(1):88-97. PubMed ID: 23219880 [TBL] [Abstract][Full Text] [Related]
4. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Rockwell NC; Njuguna SL; Roberts L; Castillo E; Parson VL; Dwojak S; Lagarias JC; Spiller SC Biochemistry; 2008 Jul; 47(27):7304-16. PubMed ID: 18549244 [TBL] [Abstract][Full Text] [Related]
5. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156 [TBL] [Abstract][Full Text] [Related]
6. Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states. Cornilescu CC; Cornilescu G; Burgie ES; Markley JL; Ulijasz AT; Vierstra RD J Biol Chem; 2014 Jan; 289(5):3055-65. PubMed ID: 24337572 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924. Hardman SJ; Hauck AF; Clark IP; Heyes DJ; Scrutton NS Biophys J; 2014 Nov; 107(9):2195-203. PubMed ID: 25418104 [TBL] [Abstract][Full Text] [Related]
8. Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Ishizuka T; Shimada T; Okajima K; Yoshihara S; Ochiai Y; Katayama M; Ikeuchi M Plant Cell Physiol; 2006 Sep; 47(9):1251-61. PubMed ID: 16887842 [TBL] [Abstract][Full Text] [Related]
9. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
10. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected]. Lim S; Rockwell NC; Martin SS; Dallas JL; Lagarias JC; Ames JB Photochem Photobiol Sci; 2014 Jun; 13(6):951-62. PubMed ID: 24745038 [TBL] [Abstract][Full Text] [Related]
11. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related]
12. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
13. The photoinitiated reaction pathway of full-length cyanobacteriochrome Tlr0924 monitored over 12 orders of magnitude. Hauck AF; Hardman SJ; Kutta RJ; Greetham GM; Heyes DJ; Scrutton NS J Biol Chem; 2014 Jun; 289(25):17747-57. PubMed ID: 24817121 [TBL] [Abstract][Full Text] [Related]
14. The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin. Ishizuka T; Kamiya A; Suzuki H; Narikawa R; Noguchi T; Kohchi T; Inomata K; Ikeuchi M Biochemistry; 2011 Feb; 50(6):953-61. PubMed ID: 21197959 [TBL] [Abstract][Full Text] [Related]
15. Conservation and diversity in the primary forward photodynamics of red/green cyanobacteriochromes. Gottlieb SM; Kim PW; Chang CW; Hanke SJ; Hayer RJ; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2015 Feb; 54(4):1028-42. PubMed ID: 25545467 [TBL] [Abstract][Full Text] [Related]
16. Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. Tachibana SR; Tang L; Chen C; Zhu L; Takeda Y; Fushimi K; Seevers TK; Narikawa R; Sato M; Fang C Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119379. PubMed ID: 33401182 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Nagae T; Unno M; Koizumi T; Miyanoiri Y; Fujisawa T; Masui K; Kamo T; Wada K; Eki T; Ito Y; Hirose Y; Mishima M Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972439 [TBL] [Abstract][Full Text] [Related]
18. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related]