These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3335550)

  • 1. Enhanced carboxyl methylation of membrane-associated hemoglobin in human erythrocytes.
    O'Connor CM; Yutzey KE
    J Biol Chem; 1988 Jan; 263(3):1386-90. PubMed ID: 3335550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein carboxyl methylation and methyl ester turnover in density-fractionated human erythrocytes.
    Ladino CA; O'Connor CM
    Mech Ageing Dev; 1990 Aug; 55(2):123-37. PubMed ID: 2232907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxyl methylation of cytosolic proteins in intact human erythrocytes. Identification of numerous methyl-accepting proteins including hemoglobin and carbonic anhydrase.
    O'Connor CM; Clarke S
    J Biol Chem; 1984 Feb; 259(4):2570-8. PubMed ID: 6421813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro. Saturation of intracellular sites in vivo.
    O'Connor CM; Clarke S
    J Biol Chem; 1983 Jul; 258(13):8485-92. PubMed ID: 6863297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes.
    Lou LL; Clarke S
    Biochemistry; 1987 Jan; 26(1):52-9. PubMed ID: 3828308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress.
    Ingrosso D; D'angelo S; di Carlo E; Perna AF; Zappia V; Galletti P
    Eur J Biochem; 2000 Jul; 267(14):4397-405. PubMed ID: 10880963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis.
    Lowenson JD; Clarke S
    J Biol Chem; 1992 Mar; 267(9):5985-95. PubMed ID: 1556110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automethylation of protein (D-aspartyl/L-isoaspartyl) carboxyl methyltransferase, a response to enzyme aging.
    Lindquist JA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):23-30. PubMed ID: 8011068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural elements affecting the recognition of L-isoaspartyl residues by the L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis.
    Lowenson JD; Clarke S
    J Biol Chem; 1991 Oct; 266(29):19396-406. PubMed ID: 1833402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of protein carboxyl methylation by S-adenosyl-L-homocysteine in intact erythrocytes. Physiological consequences.
    Barber JR; Clarke S
    J Biol Chem; 1984 Jun; 259(11):7115-22. PubMed ID: 6547141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates.
    O'Connor CM; Aswad DW; Clarke S
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7757-61. PubMed ID: 6595658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylation of microinjected isoaspartyl peptides in Xenopus oocytes. Competition with protein carboxyl methylation reactions.
    Romanik EA; O'Connor CM
    J Biol Chem; 1989 Aug; 264(24):14050-6. PubMed ID: 2760057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetrical distribution of L-isoaspartyl protein carboxyl methyltransferases in the plasma membranes of rat kidney cortex.
    Gingras D; Boivin D; Beliveau R
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):145-50. PubMed ID: 8280092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein repair methyltransferase from the hyperthermophilic archaeon Pyrococcus furiosus. Unusual methyl-accepting affinity for D-aspartyl and N-succinyl-containing peptides.
    Thapar N; Griffith SC; Yeates TO; Clarke S
    J Biol Chem; 2002 Jan; 277(2):1058-65. PubMed ID: 11694513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective methyl esterification of erythrocyte membrane proteins by protein methylase II.
    Galletti P; Paik WK; Kim S
    Biochemistry; 1978 Oct; 17(20):4272-6. PubMed ID: 708712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspartimide formation in the joining peptide sequence of porcine and mouse pro-opiomelanocortin.
    Toney K; Bateman A; Gagnon C; Bennett HP
    J Biol Chem; 1993 Jan; 268(2):1024-31. PubMed ID: 8380403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase.
    Ota IM; Ding L; Clarke S
    J Biol Chem; 1987 Jun; 262(18):8522-31. PubMed ID: 3597386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues.
    Murray ED; Clarke S
    J Biol Chem; 1984 Sep; 259(17):10722-32. PubMed ID: 6469980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV.
    Potter SM; Henzel WJ; Aswad DW
    Protein Sci; 1993 Oct; 2(10):1648-63. PubMed ID: 8251940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction.
    Xie H; Clarke S
    J Biol Chem; 1993 Jun; 268(18):13364-71. PubMed ID: 8514774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.