These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Kang SO; Kwak MK J Microbiol Biotechnol; 2021 Jan; 31(1):79-91. PubMed ID: 33203822 [TBL] [Abstract][Full Text] [Related]
3. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Kwak MK; Ku M; Kang SO Biochim Biophys Acta Gen Subj; 2018 Jan; 1862(1):18-39. PubMed ID: 29017767 [TBL] [Abstract][Full Text] [Related]
4. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans. Shin Y; Lee S; Ku M; Kwak MK; Kang SO Int J Biochem Cell Biol; 2017 Nov; 92():183-201. PubMed ID: 29031807 [TBL] [Abstract][Full Text] [Related]
5. NAD(+)-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. Kwak MK; Ku M; Kang SO FEBS Lett; 2014 Apr; 588(7):1144-53. PubMed ID: 24607541 [TBL] [Abstract][Full Text] [Related]
6. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Ku M; Baek YU; Kwak MK; Kang SO Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):772-788. PubMed ID: 27751952 [TBL] [Abstract][Full Text] [Related]
7. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation. Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070 [TBL] [Abstract][Full Text] [Related]
8. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid. Kwak MK; Song SH; Ku M; Kang SO FEBS Lett; 2015 Jul; 589(15):1863-71. PubMed ID: 25957768 [TBL] [Abstract][Full Text] [Related]
9. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. Tillmann AT; Strijbis K; Cameron G; Radmaneshfar E; Thiel M; Munro CA; MacCallum DM; Distel B; Gow NA; Brown AJ PLoS One; 2015; 10(6):e0126940. PubMed ID: 26039593 [TBL] [Abstract][Full Text] [Related]
10. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088 [TBL] [Abstract][Full Text] [Related]
11. SDH2 is involved in proper hypha formation and virulence in Candida albicans. Bi S; Lv QZ; Wang TT; Fuchs BB; Hu DD; Anastassopoulou CG; Desalermos A; Muhammed M; Wu CL; Jiang YY; Mylonakis E; Wang Y Future Microbiol; 2018 Aug; 13(10):1141-1156. PubMed ID: 30113213 [TBL] [Abstract][Full Text] [Related]
12. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Marttila E; Bowyer P; Sanglard D; Uittamo J; Kaihovaara P; Salaspuro M; Richardson M; Rautemaa R Mol Oral Microbiol; 2013 Aug; 28(4):281-91. PubMed ID: 23445445 [TBL] [Abstract][Full Text] [Related]
13. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. Hasim S; Hussin NA; Alomar F; Bidasee KR; Nickerson KW; Wilson MA J Biol Chem; 2014 Jan; 289(3):1662-74. PubMed ID: 24302734 [TBL] [Abstract][Full Text] [Related]
14. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090 [TBL] [Abstract][Full Text] [Related]
15. Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Xu N; Qian K; Dong Y; Chen Y; Yu Q; Zhang B; Xing L; Li M Res Microbiol; 2014 Apr; 165(3):252-61. PubMed ID: 24631590 [TBL] [Abstract][Full Text] [Related]
16. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Felk A; Kretschmar M; Albrecht A; Schaller M; Beinhauer S; Nichterlein T; Sanglard D; Korting HC; Schäfer W; Hube B Infect Immun; 2002 Jul; 70(7):3689-700. PubMed ID: 12065511 [TBL] [Abstract][Full Text] [Related]
17. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis. Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477 [TBL] [Abstract][Full Text] [Related]