BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33356087)

  • 1. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis.
    Yang J; Liu X; Tang J; DÄ—dinaitÄ— A; Liu J; Miao R; Liu K; Peng J; Claesson PM; Liu X; Fang Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3336-3348. PubMed ID: 33356087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation.
    Liu X; Tang J; Yang J; Zhang H; Fang Y
    J Colloid Interface Sci; 2022 Mar; 610():368-375. PubMed ID: 34923274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis.
    Jiang Z; Karan S; Livingston AG
    Adv Mater; 2018 Apr; 30(15):e1705973. PubMed ID: 29484724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Area Self-Assembled Ultrathin Polyimine Nanofilms Formed at the Liquid-Liquid Interface Used for Molecular Separation.
    Tiwari K; Sarkar P; Modak S; Singh H; Pramanik SK; Karan S; Das A
    Adv Mater; 2020 Feb; 32(8):e1905621. PubMed ID: 31951297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial synthesis of large-area ultrathin polyimine nanofilms as molecular separation membrane.
    Tiwari K; Modak S; Sarkar P; Ray S; Adupa V; Reddy KA; Pramanik SK; Das A; Karan S
    iScience; 2022 Apr; 25(4):104027. PubMed ID: 35313692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous Interfacial Assembly of Polymer Nanofilms via Surfactant-Regulated Marangoni Instability.
    Park SJ; Lee MS; Kilic ME; Ryu J; Park H; Park YI; Kim H; Lee KR; Lee JH
    Nano Lett; 2023 Jun; 23(11):4822-4829. PubMed ID: 37256774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-healing gold mirrors and filters at liquid-liquid interfaces.
    Smirnov E; Peljo P; Scanlon MD; Gumy F; Girault HH
    Nanoscale; 2016 Apr; 8(14):7723-37. PubMed ID: 27001646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer.
    Xiao A; Zhang Z; Shi X; Wang Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44783-44791. PubMed ID: 31689069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust polymer nanofilms with bioengineering and environmental applications via facile and highly efficient covalent layer-by-layer assembly.
    Huang J; Qiu X; Yan B; Xie L; Yang J; Xu H; Deng Y; Chen L; Wang X; Zeng H
    J Mater Chem B; 2018 Jun; 6(22):3742-3750. PubMed ID: 32254836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Removal of Iodine from Water by a Calix[4]pyrrole-Based Nanofilm.
    Wang T; Liu X; Yang J; Tang J; Zhai B; Luo Y; Liu Z; Fang Y
    Langmuir; 2024 Feb; 40(8):4489-4495. PubMed ID: 38369881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity.
    Liu TY; Yuan HG; Liu YY; Ren D; Su YC; Wang X
    ACS Nano; 2018 Sep; 12(9):9253-9265. PubMed ID: 30153418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifouling Asymmetric Block Copolymer Nanofilms via Freestanding Interfacial Polymerization for Efficient and Sustainable Water Purification.
    Chen Y; Song K; Li Z; Su Y; Yu L; Chen B; Huang Q; Da L; Han Z; Zhou Y; Zhu X; Xu J; Dong R
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408345. PubMed ID: 38888253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring a Tyrosine-Rich Peptide into Size- and Thickness-Controllable Nanofilms.
    Paribok IV; Kim YO; Choi SK; Jung BY; Lee J; Nam KT; Agabekov VE; Lee YS
    ACS Omega; 2018 Apr; 3(4):3901-3907. PubMed ID: 31458629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer nanofilms with enhanced microporosity by interfacial polymerization.
    Jimenez-Solomon MF; Song Q; Jelfs KE; Munoz-Ibanez M; Livingston AG
    Nat Mater; 2016 Jul; 15(7):760-7. PubMed ID: 27135857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination.
    Jiang C; Zhang L; Li P; Sun H; Hou Y; Niu QJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25304-25315. PubMed ID: 32369334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacially confined preparation of fumaronitrile-based nanofilms exhibiting broadband saturable absorption properties.
    Luo Y; Li M; Tang J; Zang J; Wang Y; Liu T; Fang Y
    J Colloid Interface Sci; 2022 Dec; 627():569-577. PubMed ID: 35870409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil-water interfacial self-assembly: a novel strategy for nanofilm and nanodevice fabrication.
    Hu L; Chen M; Fang X; Wu L
    Chem Soc Rev; 2012 Feb; 41(3):1350-62. PubMed ID: 22076485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D Protein Supramolecular Nanofilm with Exceptionally Large Area and Emergent Functions.
    Wang D; Ha Y; Gu J; Li Q; Zhang L; Yang P
    Adv Mater; 2016 Sep; 28(34):7414-23. PubMed ID: 27337177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving.
    Liu SH; Zhou JH; Wu C; Zhang P; Cao X; Sun JK
    Nat Commun; 2024 Mar; 15(1):2478. PubMed ID: 38509092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable and Lithography-Compatible Interconnects Enabled by Self-Assembled Nanofilms with Interlocking Interfaces.
    Li X; Lin Y; Cui L; Li C; Yang Z; Zhao S; Hao T; Wang G; Heo JY; Yu JC; Chang YW; Zhu J
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56233-56241. PubMed ID: 37988740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.