BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33356193)

  • 21. Blue myoglobin reconstituted with an iron porphycene shows extremely high oxygen affinity.
    Hayashi T; Dejima H; Matsuo T; Sato H; Murata D; Hisaeda Y
    J Am Chem Soc; 2002 Sep; 124(38):11226-7. PubMed ID: 12236710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unusual ligand discrimination by a myoglobin reconstituted with a hydrophobic domain-linked heme.
    Sato H; Watanabe M; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2005 Jan; 127(1):56-7. PubMed ID: 15631446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Fe-CO bond energy in myoglobin: a QM/MM study of the effect of tertiary structure.
    Strickland N; Mulholland AJ; Harvey JN
    Biophys J; 2006 Feb; 90(4):L27-9. PubMed ID: 16387767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic heme protein models that function in aqueous solution.
    Kitagishi H; Kano K
    Chem Commun (Camb); 2021 Jan; 57(2):148-173. PubMed ID: 33346275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum chemical evaluation of protein control over heme ligation: CO/O2 discrimination in myoglobin.
    De Angelis F; Jarzecki AA; Car R; Spiro TG
    J Phys Chem B; 2005 Feb; 109(7):3065-70. PubMed ID: 16851321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast carbon monoxide photolysis and heme spin-crossover in myoglobin via nonadiabatic quantum dynamics.
    Falahati K; Tamura H; Burghardt I; Huix-Rotllant M
    Nat Commun; 2018 Oct; 9(1):4502. PubMed ID: 30374057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of distal interactions on O2 binding to heme.
    Kepp KP; Dasmeh P
    J Phys Chem B; 2013 Apr; 117(14):3755-70. PubMed ID: 23489162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific modification of structure and property of myoglobin by the formation of tetrazolylhistidine 64(E7). Reaction of the modified myoglobin with molecular oxygen.
    Shiro Y; Iwata T; Makino R; Fujii M; Isogai Y; Iizuka T
    J Biol Chem; 1993 Sep; 268(27):19983-90. PubMed ID: 8397193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic motion and rearranged molecular shape of heme in myoglobin: structural and functional consequences.
    Neya S
    Molecules; 2013 Mar; 18(3):3168-82. PubMed ID: 23478515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase.
    Gardner AM; Gardner PR
    J Inorg Biochem; 2023 Aug; 245():112257. PubMed ID: 37229820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanism of myoglobin autoxidation: insights from computer simulations.
    Arcon JP; Rosi P; Petruk AA; Marti MA; Estrin DA
    J Phys Chem B; 2015 Feb; 119(5):1802-13. PubMed ID: 25578484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The heme iron coordination complex in His64(E7)Tyr recombinant sperm whale myoglobin.
    Pin S; Alpert B; Cortès R; Ascone I; Chiu ML; Sligar SG
    Biochemistry; 1994 Sep; 33(38):11618-23. PubMed ID: 7918375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mössbauer studies of the ferryl, ferrous and ferric states of dehaloperoxidase from A. ornata.
    Popescu CV; Dinh T; Chen H; Miller D; Washburn A; McGuire A; Dumarieh R; D'Antonio J; Ghiladi RA
    J Inorg Biochem; 2022 Sep; 234():111867. PubMed ID: 35660721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of ligand bending in the photodissociation of O2 vs CO-heme: a time-dependent density functional study.
    De Angelis F; Car R; Spiro TG
    J Am Chem Soc; 2003 Dec; 125(51):15710-1. PubMed ID: 14677938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular insight into intrinsic heme distortion in ligand binding in hemoprotein.
    Neya S; Suzuki M; Hoshino T; Ode H; Imai K; Komatsu T; Ikezaki A; Nakamura M; Furutani Y; Kandori H
    Biochemistry; 2010 Jul; 49(27):5642-50. PubMed ID: 20536131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques.
    Carver TE; Rohlfs RJ; Olson JS; Gibson QH; Blackmore RS; Springer BA; Sligar SG
    J Biol Chem; 1990 Nov; 265(32):20007-20. PubMed ID: 2246277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of CO, NO, and O2 to heme by density functional and multireference ab initio calculations.
    Radoń M; Pierloot K
    J Phys Chem A; 2008 Nov; 112(46):11824-32. PubMed ID: 18942804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution.
    Krzywda S; Murshudov GN; Brzozowski AM; Jaskolski M; Scott EE; Klizas SA; Gibson QH; Olson JS; Wilkinson AJ
    Biochemistry; 1998 Nov; 37(45):15896-907. PubMed ID: 9843395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a using Mössbauer spectroscopy with a high velocity resolution.
    Alenkina IV; Kumar A; Berkovsky AL; Oshtrakh MI
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():547-557. PubMed ID: 29100196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.