These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33356221)

  • 1. Exploring the pH-Dependent Structure-Dynamics-Function Relationship of Human Renin.
    Ma S; Henderson JA; Shen J
    J Chem Inf Model; 2021 Jan; 61(1):400-407. PubMed ID: 33356221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p
    Harris RC; Shen J
    J Chem Inf Model; 2019 Nov; 59(11):4821-4832. PubMed ID: 31661616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-dependent conformational dynamics of beta-secretase 1: A molecular dynamics study.
    Mermelstein DJ; McCammon JA; Walker RC
    J Mol Recognit; 2019 Mar; 32(3):e2765. PubMed ID: 30264484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.
    Harris JA; Liu R; Martins de Oliveira V; Vázquez-Montelongo EA; Henderson JA; Shen J
    J Chem Theory Comput; 2022 Dec; 18(12):7510-7527. PubMed ID: 36377980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.
    Kim MO; Blachly PG; McCammon JA
    PLoS Comput Biol; 2015 Oct; 11(10):e1004341. PubMed ID: 26506513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the pH- and Ligand-Dependent Flap Dynamics of Malarial Plasmepsin II.
    Henderson JA; Shen J
    J Chem Inf Model; 2022 Jan; 62(1):150-158. PubMed ID: 34964641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent Population Shift Regulates BACE1 Activity and Inhibition.
    Ellis CR; Shen J
    J Am Chem Soc; 2015 Aug; 137(30):9543-6. PubMed ID: 26186663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors.
    Henderson JA; Verma N; Harris RC; Liu R; Shen J
    J Chem Phys; 2020 Sep; 153(11):115101. PubMed ID: 32962355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the orientation of the catalytic dyad in aspartic proteases.
    Friedman R; Caflisch A
    Proteins; 2010 May; 78(6):1575-82. PubMed ID: 20112416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flap Dynamics in Pepsin-Like Aspartic Proteases: A Computational Perspective Using Plasmepsin-II and BACE-1 as Model Systems.
    Bhakat S; Söderhjelm P
    J Chem Inf Model; 2022 Feb; 62(4):914-926. PubMed ID: 35138093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations.
    Soares RO; Torres PHM; da Silva ML; Pascutti PG
    J Struct Biol; 2016 Aug; 195(2):216-226. PubMed ID: 27291071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of recombinant human renal renin: effect of histidine in the P2 subsite on pH dependence.
    Green DW; Aykent S; Gierse JK; Zupec ME
    Biochemistry; 1990 Mar; 29(12):3126-33. PubMed ID: 2186807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative bioinformatic and structural analyses of pepsin and renin.
    Grahame DSA; Dupuis JH; Bryksa BC; Tanaka T; Yada RY
    Enzyme Microb Technol; 2020 Nov; 141():109632. PubMed ID: 33051007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.
    Huang Y; Chen W; Wallace JA; Shen J
    J Chem Theory Comput; 2016 Nov; 12(11):5411-5421. PubMed ID: 27709966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in silico studies of naphthoquinones and peptidomimetics toward Plasmodium falciparum plasmepsin V.
    Sittikul P; Songtawee N; Kongkathip N; Boonyalai N
    Biochimie; 2018 Sep; 152():159-173. PubMed ID: 30103899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the alkaline stability of pepsin through rational protein design using renin, an alkaline-stable aspartic protease, as a structural and functional reference.
    Grahame DAS; Dupuis JH; Bryksa BC; Tanaka T; Yada RY
    Enzyme Microb Technol; 2021 Oct; 150():109871. PubMed ID: 34489030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases.
    McGillewie L; Ramesh M; Soliman ME
    Protein J; 2017 Oct; 36(5):385-396. PubMed ID: 28762197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.