BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33356226)

  • 1. Zero-Background Surface-Enhanced Raman Scattering Detection of Cymoxanil Based on the Change of the Cyano Group after Ultraviolet Irradiation.
    Mi S; Ji L; Yu H; Guo Y; Cheng Y; Yang F; Yao W; Xie Y
    J Agric Food Chem; 2021 Jan; 69(1):520-527. PubMed ID: 33356226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman silent region - based method for detection of pesticides with cyano group.
    Mi S; Xu C; Liu Q; Du Y; Yuan S; Yu H; Guo Y; Cheng Y; Xie Y; Yao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124326. PubMed ID: 38669978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue.
    Chen M; Luo W; Liu Q; Hao N; Zhu Y; Liu M; Wang L; Yang H; Chen X
    Anal Chem; 2018 Nov; 90(22):13647-13654. PubMed ID: 30379069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved analysis of propamocarb and cymoxanil for the investigation of residue behavior in two vegetables with different cultivation conditions.
    Chen X; Wang W; Liu F; Bian Y
    J Sci Food Agric; 2020 May; 100(7):3157-3163. PubMed ID: 32096228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residue behavior and risk assessment of cymoxanil in grape under field conditions and survey of market samples in Guangzhou.
    Huang J; Ye Q; Wan K; Wang F
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3465-3472. PubMed ID: 30515692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a gas chromatographic method for fungicide cymoxanil analysis in dried hops.
    Hengel MJ; Shibamoto T
    J Agric Food Chem; 2001 Feb; 49(2):570-3. PubMed ID: 11261994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and sensitive detection of pyrimethanil residues on pome fruits by Surface Enhanced Raman Scattering.
    Mandrile L; Giovannozzi AM; Durbiano F; Martra G; Rossi AM
    Food Chem; 2018 Apr; 244():16-24. PubMed ID: 29120765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of gold nanorods for SERS detection of thiabendazole in apple.
    Fu G; Sun DW; Pu H; Wei Q
    Talanta; 2019 Apr; 195():841-849. PubMed ID: 30625626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables.
    Chen J; Huang M; Kong L; Lin M
    Carbohydr Polym; 2019 Feb; 205():596-600. PubMed ID: 30446146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of ametoctradin residue in fruits and vegetables by modified quick, easy, cheap, effective, rugged, and safe method using ultra-performance liquid chromatography/tandem mass spectrometry.
    Hu M; Liu X; Dong F; Xu J; Li S; Xu H; Zheng Y
    Food Chem; 2015 May; 175():395-400. PubMed ID: 25577097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles.
    Pan TT; Sun DW; Pu H; Wei Q
    J Agric Food Chem; 2018 Mar; 66(9):2180-2187. PubMed ID: 29443523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy.
    Dowgiallo AM; Guenther DA
    J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables.
    Guo Z; Wu X; Jayan H; Yin L; Xue S; El-Seedi HR; Zou X
    Food Chem; 2024 Feb; 434():137469. PubMed ID: 37729780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering.
    Müller C; David L; Chiş V; Pînzaru SC
    Food Chem; 2014 Feb; 145():814-20. PubMed ID: 24128550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables.
    Wang P; Wu L; Lu Z; Li Q; Yin W; Ding F; Han H
    Anal Chem; 2017 Feb; 89(4):2424-2431. PubMed ID: 28194954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of residues of the fungicide cymoxanil in grapes using multicolumn HPLC].
    Lindner W; Posch W; Lechner W
    Z Lebensm Unters Forsch; 1984 Jun; 178(6):471-4. PubMed ID: 6485553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables.
    Chen J; Huang Y; Kannan P; Zhang L; Lin Z; Zhang J; Chen T; Guo L
    Anal Chem; 2016 Feb; 88(4):2149-55. PubMed ID: 26810698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling.
    Gong X; Tang M; Gong Z; Qiu Z; Wang D; Fan M
    Food Chem; 2019 Oct; 295():254-258. PubMed ID: 31174756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues.
    Ji W; Yao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():125-30. PubMed ID: 25754387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.