These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 33356294)
1. Investigations into the Complete Spreading Dynamics of a Viscoelastic Drop on a Spherical Substrate. Shyam S; Gaikwad HS; Ghalib Ahmed SA; Chakraborty B; Mondal PK Langmuir; 2021 Jan; 37(1):63-75. PubMed ID: 33356294 [TBL] [Abstract][Full Text] [Related]
2. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach. Iwamatsu M Phys Rev E; 2017 Jul; 96(1-1):012803. PubMed ID: 29347224 [TBL] [Abstract][Full Text] [Related]
3. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
4. Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate. Iwamatsu M Phys Rev E; 2017 Oct; 96(4-1):042803. PubMed ID: 29347502 [TBL] [Abstract][Full Text] [Related]
7. Universal evolution of a viscous-capillary spreading drop. Thampi SP; Pagonabarraga I; Adhikari R; Govindarajan R Soft Matter; 2016 Jul; 12(28):6073-8. PubMed ID: 27374245 [TBL] [Abstract][Full Text] [Related]
8. Quantitative model for predicting the imbibition dynamics of viscoelastic fluids in nonuniform microfluidic assays. Rawat Y; Kalia S; Mondal PK Phys Rev E; 2021 Nov; 104(5-2):055106. PubMed ID: 34942698 [TBL] [Abstract][Full Text] [Related]
9. Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall. Mukherjee S; Sarkar K Phys Fluids (1994); 2014 Oct; 26(10):103102. PubMed ID: 25378894 [TBL] [Abstract][Full Text] [Related]
10. Toward Unveiling the Anomalies Associated with the Spontaneous Spreading of Droplets. Debnath D; Kumar P; Mitra SK Langmuir; 2021 Dec; 37(51):14833-14845. PubMed ID: 34904828 [TBL] [Abstract][Full Text] [Related]
11. Dynamic wetting of Newtonian and viscoelastic fluids on microstructured surfaces. Wang X; Yan X; Du J; Chen F; Yu F; Tao R; Wang S; Min Q J Colloid Interface Sci; 2023 Dec; 652(Pt B):2098-2107. PubMed ID: 37699328 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of Wetting. Chebbi R J Colloid Interface Sci; 2000 Sep; 229(1):155-164. PubMed ID: 10942553 [TBL] [Abstract][Full Text] [Related]
14. Spreading law on a completely wettable spherical substrate: The energy balance approach. Iwamatsu M Phys Rev E; 2017 May; 95(5-1):052802. PubMed ID: 28618509 [TBL] [Abstract][Full Text] [Related]
15. Inertial to viscoelastic transition in early drop spreading on soft surfaces. Chen L; Bonaccurso E; Shanahan ME Langmuir; 2013 Feb; 29(6):1893-8. PubMed ID: 23317106 [TBL] [Abstract][Full Text] [Related]
16. Effect of Moving Contact Line's Curvature on Dynamic Wetting of non-Newtonian Fluids. Wang X; Min Q; Zhang Z; Duan Y Langmuir; 2018 Dec; 34(50):15612-15620. PubMed ID: 30461284 [TBL] [Abstract][Full Text] [Related]
17. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model. Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614 [TBL] [Abstract][Full Text] [Related]
18. Dynamic wetting at the nanoscale. Nakamura Y; Carlson A; Amberg G; Shiomi J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033010. PubMed ID: 24125347 [TBL] [Abstract][Full Text] [Related]
19. Spreading dynamics and dynamic contact angle of non-Newtonian fluids. Wang XD; Lee DJ; Peng XF; Lai JY Langmuir; 2007 Jul; 23(15):8042-7. PubMed ID: 17590025 [TBL] [Abstract][Full Text] [Related]
20. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]