BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33356335)

  • 1. Brownian motion-based nanoparticle sizing-A powerful approach for in situ analysis of nanoparticle-protein interactions.
    Nienhaus K; Nienhaus GU
    Biointerphases; 2020 Dec; 15(6):061201. PubMed ID: 33356335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of a Monolayer Protein Corona around Polystyrene Nanoparticles and Implications for Nanoparticle Agglomeration.
    Wang H; Ma R; Nienhaus K; Nienhaus GU
    Small; 2019 May; 15(22):e1900974. PubMed ID: 31021510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective.
    Wang H; Lin Y; Nienhaus K; Nienhaus GU
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jul; 10(4):e1500. PubMed ID: 29071798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review.
    Kopac T
    Int J Biol Macromol; 2021 Feb; 169():290-301. PubMed ID: 33340622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona.
    Ahsan SM; Rao CM; Ahmad MF
    Adv Exp Med Biol; 2018; 1048():175-198. PubMed ID: 29453539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona.
    Martinez-Moro M; Di Silvio D; Moya SE
    Biophys Chem; 2019 Oct; 253():106218. PubMed ID: 31325709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.
    Liu Y; Wang J; Xiong Q; Hornburg D; Tao W; Farokhzad OC
    Acc Chem Res; 2021 Jan; 54(2):291-301. PubMed ID: 33180454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the nanoparticle-protein corona complexes using computational and experimental methods.
    Kharazian B; Hadipour NL; Ejtehadi MR
    Int J Biochem Cell Biol; 2016 Jun; 75():162-74. PubMed ID: 26873405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake.
    Pustulka SM; Ling K; Pish SL; Champion JA
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48284-48295. PubMed ID: 33054178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights.
    Nienhaus K; Nienhaus GU
    Small; 2023 Jul; 19(28):e2301663. PubMed ID: 37010040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A health concern regarding the protein corona, aggregation and disaggregation.
    Falahati M; Attar F; Sharifi M; Haertlé T; Berret JF; Khan RH; Saboury AA
    Biochim Biophys Acta Gen Subj; 2019 May; 1863(5):971-991. PubMed ID: 30802594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Kinetic Visualization of the Protein Corona on Bioceramic Nanoparticles.
    Rial R; Tichnell B; Latimer B; Liu Z; Messina PV; Ruso JM
    Langmuir; 2018 Feb; 34(7):2471-2480. PubMed ID: 29361824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle-by-Particle In Situ Characterization of the Protein Corona via Real-Time 3D Single-Particle-Tracking Spectroscopy*.
    Tan X; Welsher K
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22359-22367. PubMed ID: 34015174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System.
    Barbero F; Russo L; Vitali M; Piella J; Salvo I; Borrajo ML; Busquets-Fité M; Grandori R; Bastús NG; Casals E; Puntes V
    Semin Immunol; 2017 Dec; 34():52-60. PubMed ID: 29066063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona.
    Milani S; Bombelli FB; Pitek AS; Dawson KA; Rädler J
    ACS Nano; 2012 Mar; 6(3):2532-41. PubMed ID: 22356488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells.
    Palchetti S; Pozzi D; Capriotti AL; Barbera G; Chiozzi RZ; Digiacomo L; Peruzzi G; Caracciolo G; Laganà A
    Colloids Surf B Biointerfaces; 2017 May; 153():263-271. PubMed ID: 28273493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake.
    Piloni A; Wong CK; Chen F; Lord M; Walther A; Stenzel MH
    Nanoscale; 2019 Dec; 11(48):23259-23267. PubMed ID: 31782458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the binding affinity of plasma proteins adsorbed on Au nanoparticles.
    Zhang X; Zhang J; Zhang F; Yu S
    Nanoscale; 2017 Apr; 9(14):4787-4792. PubMed ID: 28345718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.