These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33356336)

  • 1. Fabrication and friction characteristics of arbitrary biosurfaces.
    Maddox SR; Han X; Meng X; Zou M
    Biointerphases; 2020 Dec; 15(6):061016. PubMed ID: 33356336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biostructure-like surfaces with thermally responsive wettability prepared by temperature-induced phase separation micromolding.
    Gao J; Liu Y; Xu H; Wang Z; Zhang X
    Langmuir; 2010 Jun; 26(12):9673-6. PubMed ID: 20158276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired, peg-studded hexagonal patterns for wetting and friction.
    Li M; Huang W; Wang X
    Biointerphases; 2015 Sep; 10(3):031008. PubMed ID: 26340927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads.
    Chen H; Zhang L; Zhang D; Zhang P; Han Z
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13987-95. PubMed ID: 26053597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Biomimetic Tongue-Emulating Surfaces for Tribological Applications.
    Andablo-Reyes E; Bryant M; Neville A; Hyde P; Sarkar R; Francis M; Sarkar A
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49371-49385. PubMed ID: 33105986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of surface degradation, self-organization and self-healing for biomimetic surfaces.
    Nosonovsky M; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1607-27. PubMed ID: 19324726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of biomimetic hexagonal surface texture in friction against lubricated skin.
    Tsipenyuk A; Varenberg M
    J R Soc Interface; 2014 May; 11(94):20140113. PubMed ID: 24621819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties.
    Xiong J; Das SN; Shin B; Kar JP; Choi JH; Myoung JM
    J Colloid Interface Sci; 2010 Oct; 350(1):344-7. PubMed ID: 20637472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.
    Myint MT; Hornyak GL; Dutta J
    J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking biological structured surfaces by phase-separation micromolding.
    Gao J; Liu Y; Xu H; Wang Z; Zhang X
    Langmuir; 2009 Apr; 25(8):4365-9. PubMed ID: 19320496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.
    Lantada AD; Hengsbach S; Bade K
    Bioinspir Biomim; 2017 Oct; 12(6):066004. PubMed ID: 28752821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.
    Burton Z; Bhushan B
    Ultramicroscopy; 2006; 106(8-9):709-19. PubMed ID: 16675115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic design of elastomer surface pattern for friction control under wet conditions.
    Huang W; Wang X
    Bioinspir Biomim; 2013 Dec; 8(4):046001. PubMed ID: 23999795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces.
    Trunfio-Sfarghiu AM; Berthier Y; Meurisse MH; Rieu JP
    Langmuir; 2008 Aug; 24(16):8765-71. PubMed ID: 18620439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2012 Oct; 384(1):182-8. PubMed ID: 22818796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles.
    Ebert D; Bhushan B
    Langmuir; 2012 Aug; 28(31):11391-9. PubMed ID: 22765167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic alignment of zinc oxide nanoparticles along a peptide nanofiber.
    Tomizaki KY; Kubo S; Ahn SA; Satake M; Imai T
    Langmuir; 2012 Sep; 28(37):13459-66. PubMed ID: 22954381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic ZnO plate twin-crystals periodical arrays.
    Tseng YH; Liu MH; Kuo YW; Chen P; Chen CT; Chen YF; Mou CY
    Chem Commun (Camb); 2012 Mar; 48(26):3215-7. PubMed ID: 22354630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature.
    Sun Y; Guo Z
    Nanoscale Horiz; 2019 Jan; 4(1):52-76. PubMed ID: 32254145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.