These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 3335640)
1. Human erythrocyte protein 4.1 is a phosphatidylserine binding protein. Rybicki AC; Heath R; Lubin B; Schwartz RS J Clin Invest; 1988 Jan; 81(1):255-60. PubMed ID: 3335640 [TBL] [Abstract][Full Text] [Related]
2. Identification of the protein 4.1 binding site to phosphatidylserine vesicles. Cohen AM; Liu SC; Lawler J; Derick L; Palek J Biochemistry; 1988 Jan; 27(2):614-9. PubMed ID: 3349050 [TBL] [Abstract][Full Text] [Related]
3. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. Schwartz RS; Tanaka Y; Fidler IJ; Chiu DT; Lubin B; Schroit AJ J Clin Invest; 1985 Jun; 75(6):1965-72. PubMed ID: 4008648 [TBL] [Abstract][Full Text] [Related]
4. Plasma membrane phospholipid organization in human erythrocytes. Schwartz RS; Chiu DT; Lubin B Curr Top Hematol; 1985; 5():63-112. PubMed ID: 3882343 [TBL] [Abstract][Full Text] [Related]
5. Interaction of erythrocyte protein 4.1 with phospholipids. A monolayer and liposome study. Shiffer KA; Goerke J; Düzgüneş N; Fedor J; Shohet SB Biochim Biophys Acta; 1988 Jan; 937(2):269-80. PubMed ID: 3337803 [TBL] [Abstract][Full Text] [Related]
6. Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles. Sato SB; Ohnishi S Eur J Biochem; 1983 Jan; 130(1):19-25. PubMed ID: 6297895 [TBL] [Abstract][Full Text] [Related]
7. Interaction of phosphatidylserine-phosphatidylcholine liposomes with sickle erythrocytes. Evidence for altered membrane surface properties. Schwartz RS; Düzgünes N; Chiu DT; Lubin B J Clin Invest; 1983 Jun; 71(6):1570-80. PubMed ID: 6408122 [TBL] [Abstract][Full Text] [Related]
8. Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins. Middelkoop E; Lubin BH; Bevers EM; Op den Kamp JA; Comfurius P; Chiu DT; Zwaal RF; van Deenen LL; Roelofsen B Biochim Biophys Acta; 1988 Jan; 937(2):281-8. PubMed ID: 3337804 [TBL] [Abstract][Full Text] [Related]
9. Distance between skeletal protein 4.1 and the erythrocyte membrane bilayer measured by resonance energy transfer. Shahrokh Z; Verkman AS; Shohet SB J Biol Chem; 1991 Jun; 266(18):12082-9. PubMed ID: 2050702 [TBL] [Abstract][Full Text] [Related]
10. Effects of phosphatidylinositol diphosphate on phospholipid asymmetry in the human erythrocyte membrane. Shiffer KA; Rood L; Emerson RK; Kuypers FA Biochemistry; 1998 Mar; 37(10):3449-58. PubMed ID: 9521666 [TBL] [Abstract][Full Text] [Related]
11. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process. Connor J; Pak CH; Zwaal RF; Schroit AJ J Biol Chem; 1992 Sep; 267(27):19412-7. PubMed ID: 1527061 [TBL] [Abstract][Full Text] [Related]
12. Erythrocyte phosphatidylserine exposure in β-thalassemia. Ibrahim HA; Fouda MI; Yahya RS; Abousamra NK; Abd Elazim RA Lab Hematol; 2014 Jun; 20(2):9-14. PubMed ID: 25000947 [TBL] [Abstract][Full Text] [Related]
13. Lipid composition of subcellular particles from sheep platelets. Location of phosphatidylethanolamine and phosphatidylserine in plasma membranes and platelet liposomes. Sánchez-Yagüe J; Llanillo M Biochim Biophys Acta; 1986 Apr; 856(2):193-201. PubMed ID: 3955038 [TBL] [Abstract][Full Text] [Related]
14. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. An X; Guo X; Sum H; Morrow J; Gratzer W; Mohandas N Biochemistry; 2004 Jan; 43(2):310-5. PubMed ID: 14717584 [TBL] [Abstract][Full Text] [Related]
15. Identification of phosphatidylserine-binding proteins in human white blood cells. Wolf M; Baggiolini M Biochem J; 1990 Aug; 269(3):723-8. PubMed ID: 2390064 [TBL] [Abstract][Full Text] [Related]
16. Regulatory mechanisms in maintenance and modulation of transmembrane lipid asymmetry: pathophysiological implications. Bevers EM; Comfurius P; Zwaal RF Lupus; 1996 Oct; 5(5):480-7. PubMed ID: 8902787 [TBL] [Abstract][Full Text] [Related]
17. The genetic abnormalities involving red cell membrane protein 4.1 with or without elliptocytosis. Alloisio N; Dorleac E; Morle L; Girot R; Galant C; Boivin P; Delaunay J Biomed Biochim Acta; 1983; 42(11-12):S38-42. PubMed ID: 6675716 [TBL] [Abstract][Full Text] [Related]
18. Cytoskeletal protein binding kinetics at planar phospholipid membranes. Mc Kiernan AE; MacDonald RI; MacDonald RC; Axelrod D Biophys J; 1997 Oct; 73(4):1987-98. PubMed ID: 9336194 [TBL] [Abstract][Full Text] [Related]
19. Membrane protein lesions in erythrocytes with Heinz bodies. Platt OS; Falcone JF J Clin Invest; 1988 Sep; 82(3):1051-8. PubMed ID: 2843566 [TBL] [Abstract][Full Text] [Related]
20. Involvement of phosphatidylinositol 4,5-bisphosphate in phosphatidylserine exposure in platelets: use of a permeant phosphoinositide-binding peptide. Bucki R; Janmey PA; Vegners R; Giraud F; Sulpice JC Biochemistry; 2001 Dec; 40(51):15752-61. PubMed ID: 11747452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]