These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 33356799)

  • 1. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater.
    Shindhal T; Rakholiya P; Varjani S; Pandey A; Ngo HH; Guo W; Ng HY; Taherzadeh MJ
    Bioengineered; 2021 Dec; 12(1):70-87. PubMed ID: 33356799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in membrane distillation processes for dye wastewater treatment: A review.
    Nthunya LN; Chong KC; Lai SO; Lau WJ; López-Maldonado EA; Camacho LM; Shirazi MMA; Ali A; Mamba BB; Osial M; Pietrzyk-Thel P; Pregowska A; Mahlangu OT
    Chemosphere; 2024 Jul; 360():142347. PubMed ID: 38759802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives.
    Kallawar GA; Bhanvase BA
    Environ Sci Pollut Res Int; 2024 Jan; 31(2):1748-1789. PubMed ID: 38055170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process.
    Natarajan S; Bajaj HC; Tayade RJ
    J Environ Sci (China); 2018 Mar; 65():201-222. PubMed ID: 29548392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of polyaniline-based adsorbents for dye removal from water and wastewater-a review.
    Nasar A; Mashkoor F
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5333-5356. PubMed ID: 30612350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of wastewater from petroleum industry: current practices and perspectives.
    Varjani S; Joshi R; Srivastava VK; Ngo HH; Guo W
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27172-27180. PubMed ID: 30868465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye Removal from Water and Wastewater Using Various Physical, Chemical, and Biological Processes.
    Piaskowski K; Świderska-Dąbrowska R; Zarzycki PK
    J AOAC Int; 2018 Sep; 101(5):1371-1384. PubMed ID: 29669626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.
    Nidheesh PV; Zhou M; Oturan MA
    Chemosphere; 2018 Apr; 197():210-227. PubMed ID: 29366952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of dyes from aqueous solution by Fenton processes: a review.
    Nidheesh PV; Gandhimathi R; Ramesh ST
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):2099-132. PubMed ID: 23338990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives.
    Devda V; Chaudhary K; Varjani S; Pathak B; Patel AK; Singhania RR; Taherzadeh MJ; Ngo HH; Wong JWC; Guo W; Chaturvedi P
    Bioengineered; 2021 Dec; 12(1):4697-4718. PubMed ID: 34334104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of electroplating industry wastewater: a review on the various techniques.
    Rajoria S; Vashishtha M; Sangal VK
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72196-72246. PubMed ID: 35084684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremoval of Reactive Blue 220 by Gonium sp. biomass.
    Boduroğlu G; Kiliç NK; Dönmez G
    Environ Technol; 2014; 35(17-20):2410-5. PubMed ID: 25145195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Treatment Ability of Membrane Technology by Integrating an Electric Field for Dye Wastewater Treatment: A Review.
    Li C; Zhang M; Song C; Tao P; Sun M; Shao M; Wang T
    J AOAC Int; 2018 Sep; 101(5):1341-1352. PubMed ID: 29669624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview.
    Javaid R; Qazi UY
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31212717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decolorization and degradation of various dyes and dye-containing wastewater treatment by electron beam radiation technology: An overview.
    Liu X; Wang J
    Chemosphere; 2024 Mar; 351():141255. PubMed ID: 38244870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters.
    Verma AK; Dash RR; Bhunia P
    J Environ Manage; 2012 Jan; 93(1):154-68. PubMed ID: 22054582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the best available wastewater management techniques for a textile mill: cost and benefit analysis.
    Dogan B; Kerestecioglu M; Yetis U
    Water Sci Technol; 2010; 61(4):963-70. PubMed ID: 20182075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of TiO2 nanoparticle from Ti-salt flocculated sludge with dye wastewater.
    Kim JB; Park HJ; Shon HK; Cho DL; Kim GJ; Choi SW; Kim JH
    J Nanosci Nanotechnol; 2010 May; 10(5):3260-5. PubMed ID: 20358935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wastewater treatment of pulp and paper industry: a review.
    Kansal A; Siddiqui N; Gautam A
    J Environ Sci Eng; 2011 Apr; 53(2):203-18. PubMed ID: 23033705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of photocatalytic degradation of real textile dye house wastewater by response surface methodology.
    Hosseini SM; Fallah N; Royaee SJ
    Water Sci Technol; 2016 Nov; 74(9):1999-2009. PubMed ID: 27842020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.