These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33356799)

  • 21. Determination of optimum operating conditions for industrial dye wastewater treatment using adaptive heuristic criticism pH control.
    Zeybek Z; Yüce Cetinkaya S; Alioglu F; Alpbaz M
    J Environ Manage; 2007 Oct; 85(2):404-14. PubMed ID: 17141939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical oxidation of textile wastewater and its reuse.
    Mohan N; Balasubramanian N; Basha CA
    J Hazard Mater; 2007 Aug; 147(1-2):644-51. PubMed ID: 17336454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook.
    Saravanan A; Deivayanai VC; Kumar PS; Rangasamy G; Hemavathy RV; Harshana T; Gayathri N; Alagumalai K
    Chemosphere; 2022 Dec; 308(Pt 3):136524. PubMed ID: 36165838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Efficient and Sustainable Spent Mushroom Waste Adsorbent Based on Surfactant Modification for the Removal of Toxic Dyes.
    Alhujaily A; Yu H; Zhang X; Ma F
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 29976904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decolorization of dyes and textile wastewater by potassium permanganate.
    Xu XR; Li HB; Wang WH; Gu JD
    Chemosphere; 2005 May; 59(6):893-8. PubMed ID: 15811419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment.
    Aravind P; Selvaraj H; Ferro S; Sundaram M
    J Hazard Mater; 2016 Nov; 318():203-215. PubMed ID: 27427887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring the fate and behavior of TiO
    Mahlalela LC; Ngila JC; Dlamini LN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(8):794-803. PubMed ID: 28368778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatments for color removal from wastewater: State of the art.
    Collivignarelli MC; Abbà A; Carnevale Miino M; Damiani S
    J Environ Manage; 2019 Apr; 236():727-745. PubMed ID: 30772730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Textile dye degradation using nano zero valent iron: A review.
    Raman CD; Kanmani S
    J Environ Manage; 2016 Jul; 177():341-55. PubMed ID: 27115482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate.
    Ahmed A; Usman M; Yu B; Ding X; Peng Q; Shen Y; Cong H
    J Photochem Photobiol B; 2020 Jan; 202():111682. PubMed ID: 31731077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous decolorization and desalination of dye wastewater through electrochemical process.
    Shi J; Zhang B; Liang S; Li J; Wang Z
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8455-8464. PubMed ID: 29307069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustainable treatment of paint industry wastewater: Current techniques and challenges.
    Nair K S; Manu B; Azhoni A
    J Environ Manage; 2021 Oct; 296():113105. PubMed ID: 34216906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a novel bioflocculant from a marine bacterium and its application in dye wastewater treatment.
    Chen Z; Li Z; Liu P; Liu Y; Wang Y; Li Q; He N
    BMC Biotechnol; 2017 Nov; 17(1):84. PubMed ID: 29149843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell.
    Li X; Jin X; Zhao N; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Mar; 228():322-329. PubMed ID: 28086173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye.
    Módenes AN; Espinoza-Quiñones FR; Geraldi CA; Manenti DR; Trigueros DE; Oliveira AP; Borba CE; Kroumov AD
    Environ Technol; 2015; 36(22):2892-902. PubMed ID: 26013058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of low-cost adsorbents for dye removal--a review.
    Gupta VK; Suhas
    J Environ Manage; 2009 Jun; 90(8):2313-42. PubMed ID: 19264388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends.
    Garrido-Cardenas JA; Esteban-García B; Agüera A; Sánchez-Pérez JA; Manzano-Agugliaro F
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31881722
    [No Abstract]   [Full Text] [Related]  

  • 38. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.
    Chen C; Nurhayati E; Juang Y; Huang C
    J Environ Sci (China); 2016 Jul; 45():100-7. PubMed ID: 27372123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent.
    Wawrzkiewicz M; Bartczak P; Jesionowski T
    Int J Biol Macromol; 2017 Jun; 99():754-764. PubMed ID: 28283458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review.
    Liu Q; Zhou Y; Lu J; Zhou Y
    Chemosphere; 2020 Feb; 241():125043. PubMed ID: 31683417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.