These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33356799)

  • 61. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process.
    Rodrigues CS; Madeira LM; Boaventura RA
    Environ Technol; 2013; 34(5-8):719-29. PubMed ID: 23837323
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives.
    Abidli A; Huang Y; Ben Rejeb Z; Zaoui A; Park CB
    Chemosphere; 2022 Apr; 292():133102. PubMed ID: 34914948
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology.
    Li W; Mu B; Yang Y
    Bioresour Technol; 2019 Apr; 277():157-170. PubMed ID: 30638884
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent advances in the removal of dyes from wastewater using low-cost adsorbents.
    Bilal M; Ihsanullah I; Hassan Shah MU; Bhaskar Reddy AV; Aminabhavi TM
    J Environ Manage; 2022 Nov; 321():115981. PubMed ID: 36029630
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates.
    Buthelezi SP; Olaniran AO; Pillay B
    Molecules; 2012 Nov; 17(12):14260-74. PubMed ID: 23201644
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrocatalytic degradation and minimization of specific energy consumption of synthetic azo dye from wastewater by anodic oxidation process with an emphasis on enhancing economic efficiency and reaction mechanism.
    Hamad H; Bassyouni D; El-Ashtoukhy ES; Amin N; Abd El-Latif M
    Ecotoxicol Environ Saf; 2018 Feb; 148():501-512. PubMed ID: 29121592
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater.
    Urbina-Suarez NA; Machuca-Martínez F; Barajas-Solano AF
    Molecules; 2021 May; 26(11):. PubMed ID: 34072101
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High Permeate Recovery for Concentrate Reduction by Integrated Membrane Process in Textile Effluent.
    Sudhakar M; Vijayalakshmi P; Nilavunesan D; Thiruvengadaravi KV; Baskaralingam P; Sivanesan S
    Water Environ Res; 2016; 88(9):838-846. PubMed ID: 27654082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Wet air oxidation and catalytic wet air oxidation for dyes degradation.
    Ovejero G; Sotelo JL; Rodríguez A; Vallet A; García J
    Environ Sci Pollut Res Int; 2011 Nov; 18(9):1518-26. PubMed ID: 21553036
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Microbial degradation of dyes: An overview.
    Varjani S; Rakholiya P; Ng HY; You S; Teixeira JA
    Bioresour Technol; 2020 Oct; 314():123728. PubMed ID: 32665105
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Decolorization and degradation of reactive dye during the dyed cotton fabric rinsing process.
    Luo DH; Zheng QK; Chen S; Liu QS; Wang XX; Guan Y; Pu ZY
    Water Sci Technol; 2010; 62(4):766-75. PubMed ID: 20729577
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon.
    Mezohegyi G; van der Zee FP; Font J; Fortuny A; Fabregat A
    J Environ Manage; 2012 Jul; 102():148-64. PubMed ID: 22459012
    [TBL] [Abstract][Full Text] [Related]  

  • 73. New outlook on hazardous pollutants in the wastewater environment: Occurrence, risk assessment and elimination by electrodeionization technologies.
    Mistry G; Popat K; Patel J; Panchal K; Ngo HH; Bilal M; Varjani S
    Environ Res; 2023 Feb; 219():115112. PubMed ID: 36574803
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.
    Ganzenko O; Huguenot D; van Hullebusch ED; Esposito G; Oturan MA
    Environ Sci Pollut Res Int; 2014; 21(14):8493-524. PubMed ID: 24965093
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Treatment of wastewater containing acid rose red dye by biologically aerated filter after chemical oxidation.
    Wang X; Gu X; Zhou X; Wang W; Lin D
    Environ Technol; 2007 Aug; 28(8):831-9. PubMed ID: 17879842
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.
    Chawla S; Uppal H; Yadav M; Bahadur N; Singh N
    Ecotoxicol Environ Saf; 2017 Jan; 135():68-74. PubMed ID: 27693679
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways.
    Wu J; Ma L; Chen Y; Cheng Y; Liu Y; Zha X
    Water Res; 2016 Apr; 92():140-8. PubMed ID: 26849317
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Degradation Characteristics of Color Index Direct Blue 15 Dye Using Iron-Carbon Micro-Electrolysis Coupled with H₂O₂.
    Yang B; Gao Y; Yan D; Xu H; Wang J
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 30029464
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A study of effects of acid activated saw dust on the removal of different dissolved tannery dyes (acid dye) from aqueous solutions.
    Dhar NR; Khoda AK; Khan AH; Bala P; Karim MF
    J Environ Sci Eng; 2005 Apr; 47(2):103-8. PubMed ID: 16649612
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Direct contact membrane distillation for textile wastewater treatment: a state of the art review.
    Ramlow H; Machado RAF; Marangoni C
    Water Sci Technol; 2017 Nov; 76(9-10):2565-2579. PubMed ID: 29168697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.