These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33357052)

  • 1. The use of molecular xenomonitoring for surveillance of mosquito-borne diseases.
    Cameron MM; Ramesh A
    Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190816. PubMed ID: 33357052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel control strategies for mosquito-borne diseases.
    Jones RT; Ant TH; Cameron MM; Logan JG
    Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190802. PubMed ID: 33357056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance.
    Mondal A; Sánchez C HM; Marshall JM
    PLoS Comput Biol; 2024 May; 20(5):e1012133. PubMed ID: 38805562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MBORS: Mosquito vector Biocontrol Ontology and Recommendation System.
    Jeyakodi G; Shanthi Bala P; Sruthi OT; Swathi K
    J Vector Borne Dis; 2024 Jan; 61(1):51-60. PubMed ID: 38648406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence.
    Swei A; Couper LI; Coffey LL; Kapan D; Bennett S
    Vector Borne Zoonotic Dis; 2020 Mar; 20(3):159-170. PubMed ID: 31800374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of mosquito metabolism on vector competence.
    Gao L; Yang W; Wang J
    Insect Sci; 2024 Jun; 31(3):674-682. PubMed ID: 37907431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of islands and cluster-randomized trials to investigate vector control interventions: a case study on the Bijagós archipelago, Guinea-Bissau.
    Jones RT; Pretorius E; Ant TH; Bradley J; Last A; Logan JG
    Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190807. PubMed ID: 33357055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of mosquito sampling strategies on molecular xenomonitoring prevalence for filariasis: a systematic review.
    Reimer LJ; Pryce JD
    Bull World Health Organ; 2024 Mar; 102(3):204-215. PubMed ID: 38420575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory evaluation of molecular xenomonitoring using mosquito and tsetse fly excreta/feces to amplify
    Pilotte N; Cook DAN; Pryce J; Zulch MF; Minetti C; Reimer LJ; Williams SA
    Gates Open Res; 2019; 3():1734. PubMed ID: 32596646
    [No Abstract]   [Full Text] [Related]  

  • 10. Rescuing Troves of Hidden Ecological Data to Tackle Emerging Mosquito-Borne Diseases.
    Rund SSC; Moise IK; Beier JC; Martinez ME
    J Am Mosq Control Assoc; 2019 Mar; 35(1):75-83. PubMed ID: 31442186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cattle on vector-borne disease risk to humans: A systematic review.
    Chakraborty S; Gao S; Allan BF; Smith RL
    PLoS Negl Trop Dis; 2023 Dec; 17(12):e0011152. PubMed ID: 38113279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosquito and human surveillance of mosquito-borne diseases in the Serbian city of Novi Sad in 2022.
    Radovanov J; Bijelović S; Kovačević G; Patić A; Pustahija T; Cvjetković IH
    J Vector Ecol; 2023 Dec; 48(2):131-137. PubMed ID: 37843455
    [No Abstract]   [Full Text] [Related]  

  • 13. Leading indicators of mosquito-borne disease elimination.
    O'Regan SM; Lillie JW; Drake JM
    Theor Ecol; 2016; 9():269-286. PubMed ID: 27512522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases.
    Kading RC; Golnar AJ; Hamer SA; Hamer GL
    PLoS Negl Trop Dis; 2018 Oct; 12(10):e0006761. PubMed ID: 30359392
    [No Abstract]   [Full Text] [Related]  

  • 15. Combined measures: Progress against mosquito-borne diseases advances on three fronts: Progress against mosquito-borne diseases advances on three fronts.
    Hunter P
    EMBO Rep; 2022 Dec; 23(12):e56326. PubMed ID: 36330770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strengthening adult mosquito surveillance in Africa for disease control: learning from the present.
    Coulibaly ZI; Gowelo S; Traore I; Mbewe RB; Ngulube W; Olanga EA; DePina AJ; Sanou A; Coleman S; Tangena JA
    Curr Opin Insect Sci; 2023 Dec; 60():101110. PubMed ID: 37660835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method of determining where to target surveillance efforts in heterogeneous epidemiological systems.
    Mastin AJ; van den Bosch F; Gottwald TR; Alonso Chavez V; Parnell SR
    PLoS Comput Biol; 2017 Aug; 13(8):e1005712. PubMed ID: 28846676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical footprints enable detection of disease emergence.
    Brett TS; Rohani P
    PLoS Biol; 2020 May; 18(5):e3000697. PubMed ID: 32433658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk of mosquito-borne diseases in pilgrims to the grand Magal de Touba in Senegal.
    Diouf C; Ouaddane I; Goumballa N; Sambou M; Bassène H; Gautret P; Sokhna C
    J Travel Med; 2024 Jul; 31(5):. PubMed ID: 38900907
    [No Abstract]   [Full Text] [Related]  

  • 20. Approach from the laboratory to the field: New strategies in the control of mosquito-borne infectious diseases.
    Xu Z; Dai L; Liu J
    Sci China Life Sci; 2024 Jul; ():. PubMed ID: 39048713
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.