BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33357693)

  • 1. Classification and detection of testosterone propionate and nandrolone residues in duck meat using surface-enhanced Raman spectroscopy coupled with multivariate analysis.
    Yuan H; Liu M; Huang S; Zhao J; Tao J
    Poult Sci; 2021 Jan; 100(1):296-301. PubMed ID: 33357693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman spectroscopy method for classification of doxycycline hydrochloride and tylosin in duck meat using gold nanoparticles.
    Wang T; Liu M; Huang S; Yuan H; Zhao J; Chen J
    Poult Sci; 2021 Jun; 100(6):101165. PubMed ID: 33975036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rapid determination of tetracycline content in duck meat using particle swarm optimization algorithm and synchronous fluorescence spectrum].
    Zhao JH; Yuan HC; Liu MH; Xiao HB; Hong Q; Xu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3050-4. PubMed ID: 24555379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Diethylstilbestrol Residues in Chicken Using Surface-Enhanced Raman Spectroscopy (SERS) Coupled with Multivariate Analysis.
    Chen X; Liu M; Yuan H; Huang S; Tao J; Zhao J
    Appl Spectrosc; 2018 Dec; 72(12):1798-1806. PubMed ID: 30203675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Peking duck intramuscle fat content by near-infrared spectroscopy.
    Qin FL; Wang XC; Ding SR; Li GS; Hou ZC
    Poult Sci; 2021 Aug; 100(8):101281. PubMed ID: 34237544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid detection of sulfamethazine and ofloxacin residues in duck meat using synchronous fluorescence spectroscopy coupled with chemometric methods.
    Chen J; Liu M; Yuan H; Chen X; Zhao J
    Poult Sci; 2021 Oct; 100(10):101378. PubMed ID: 34391174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on determination of carbaryl content in duck meat based on synchronous fluorescence spectroscopy].
    Xiao HB; Liu MH; Yuan HC; Xu J; Zhao JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov; 32(11):3058-62. PubMed ID: 23387179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis.
    Xiong Z; Sun DW; Xie A; Pu H; Han Z; Luo M
    Food Chem; 2015 Jul; 178():339-45. PubMed ID: 25704721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid determination of pork sensory quality using Raman spectroscopy.
    Wang Q; Lonergan SM; Yu C
    Meat Sci; 2012 Jul; 91(3):232-9. PubMed ID: 22341828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a solid-phase extraction method coupled with LC-MS/MS for the simultaneous determination of 16 antibiotic residues in duck meat.
    Zheng W; Abd El-Aty AM; Kim SK; Choi JM; Park DH; Yoo KH; Kang YS; Jeon JS; Hacımüftüoğlu A; Shim JH; Shin HC
    Biomed Chromatogr; 2019 May; 33(5):e4501. PubMed ID: 30702178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation.
    Qiao L; Tang X; Dong J
    Food Chem; 2017 Dec; 237():1179-1185. PubMed ID: 28763967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of frankfurters by FT-Raman spectroscopy and chemometric methods.
    Campos Nda S; Oliveira KS; Almeida MR; Stephani R; de Oliveira LF
    Molecules; 2014 Nov; 19(11):18980-92. PubMed ID: 25412044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion of a low-cost electronic nose and Fourier transform near-infrared spectroscopy for qualitative and quantitative detection of beef adulterated with duck.
    Han F; Huang X; Aheto JH; Zhang X; Rashed MMA
    Anal Methods; 2022 Jan; 14(4):417-426. PubMed ID: 35014996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of aflatoxin B
    Deng J; Jiang H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121148. PubMed ID: 35306308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Precisive Prediction of Aflatoxin B
    Zhu C; Jiang H; Chen Q
    Foods; 2022 May; 11(11):. PubMed ID: 35681315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid quantification of the adulteration of pomegranate juices by Raman spectroscopy and chemometrics.
    Gao X; Fan D; Li W; Zhang X; Ye Z; Meng Y; Cheng-Yi Liu T
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123014. PubMed ID: 37352785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of testosterone, nandrolone and precursors in horse hair.
    Anielski P; Thieme D; Schlupp A; Grosse J; Ellendorff F; Mueller RK
    Anal Bioanal Chem; 2005 Nov; 383(6):903-8. PubMed ID: 16261327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Raman spectroscopy in the detection of hepatitis B virus infection.
    Tong D; Chen C; Zhang J; Lv G; Zheng X; Zhang Z; Lv X
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():248-252. PubMed ID: 31425766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of tert-butylhydroquinone in vegetable oils using surface-enhanced Raman spectroscopy.
    Pan Y; Lai K; Fan Y; Li C; Pei L; Rasco BA; Huang Y
    J Food Sci; 2014 Jun; 79(6):T1225-30. PubMed ID: 24784825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid detection of trace formaldehyde in food based on surface-enhanced Raman scattering coupled with assembled purge trap.
    Nie X; Chen Z; Tian Y; Chen S; Qu L; Fan M
    Food Chem; 2021 Mar; 340():127930. PubMed ID: 32871357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.