BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33357855)

  • 1. Leakage-proof microencapsulation of phase change materials by emulsification with acetylated cellulose nanofibrils.
    Shi X; Yazdani MR; Ajdary R; Rojas OJ
    Carbohydr Polym; 2021 Feb; 254():117279. PubMed ID: 33357855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lightweight, strong, and form-stable cellulose nanofibrils phase change aerogel with high latent heat.
    Song M; Jiang J; Zhu J; Zheng Y; Yu Z; Ren X; Jiang F
    Carbohydr Polym; 2021 Nov; 272():118460. PubMed ID: 34420720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sprayable cellulose nanofibrils stabilized phase change material Pickering emulsion for spray coating application.
    Zheng Y; Oguzlu H; Baldelli A; Zhu Y; Song M; Pratap-Singh A; Jiang F
    Carbohydr Polym; 2022 Sep; 291():119583. PubMed ID: 35698400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage.
    Bahsi Kaya G; Kim Y; Callahan K; Kundu S
    Carbohydr Polym; 2022 Jan; 276():118745. PubMed ID: 34823777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Carbohydr Polym; 2021 Dec; 273():118585. PubMed ID: 34560986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage.
    Shen Z; Oh K; Kwon S; Toivakka M; Lee HL
    Int J Biol Macromol; 2021 Mar; 174():402-412. PubMed ID: 33529630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage.
    Yazdani MR; Ajdary R; Kankkunen A; Rojas OJ; Seppälä A
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6188-6200. PubMed ID: 33522810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural Sporopollenin Microcapsules Facilitated Encapsulation of Phase Change Material into Cellulose Composites for Smart and Biocompatible Materials.
    Becherini S; Mitmoen M; Tran CD
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44708-44721. PubMed ID: 31725254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth.
    Cao Y; Jiang Y; Song Y; Cao S; Miao M; Feng X; Fang J; Shi L
    Carbohydr Polym; 2015 Oct; 131():152-8. PubMed ID: 26256171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green, recyclable and high latent heat form-stable phase change composites supported by cellulose nanofibers for thermal energy management.
    Pang Y; Sun J; Zhang W; Lai C; Liu Y; Guo H; Zhang D
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130633. PubMed ID: 38447835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.
    Carrillo CA; Nypelö TE; Rojas OJ
    J Colloid Interface Sci; 2015 May; 445():166-173. PubMed ID: 25617611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microencapsulated phase change material with chitin nanocrystals stabilized Pickering emulsion for thermal energy storage.
    Tan C; He Y; Luo B; Liu M
    Int J Biol Macromol; 2023 Jun; 240():124374. PubMed ID: 37028616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils.
    Li Q; Wu Y; Shabbir M; Pei Y; Liang H; Li J; Chen Y; Li Y; Li B; Luo X; Liu S
    Food Chem; 2021 Jul; 349():129163. PubMed ID: 33550021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.
    Carrillo CA; Nypelö T; Rojas OJ
    Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents.
    Lu Y; Tao P; Zhang N; Nie S
    Carbohydr Polym; 2020 Oct; 245():116463. PubMed ID: 32718602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(dodecyl methacrylate) as solvent of paraffins for phase change materials and thermally reversible light scattering films.
    Puig J; Williams RJ; Hoppe CE
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9180-5. PubMed ID: 23977871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant.
    Huan S; Yokota S; Bai L; Ago M; Borghei M; Kondo T; Rojas OJ
    Biomacromolecules; 2017 Dec; 18(12):4393-4404. PubMed ID: 29131593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the thermal storage capacity of a phase change material by encapsulation: preparation and application in natural rubber.
    Phadungphatthanakoon S; Poompradub S; Wanichwecharungruang SP
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3691-6. PubMed ID: 21882869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.