These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33357876)

  • 1. Biotech nanocellulose: A review on progress in product design and today's state of technical and medical applications.
    Klemm D; Petzold-Welcke K; Kramer F; Richter T; Raddatz V; Fried W; Nietzsche S; Bellmann T; Fischer D
    Carbohydr Polym; 2021 Feb; 254():117313. PubMed ID: 33357876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.
    Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF
    Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.
    Mohammadkazemi F; Faria M; Cordeiro N
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials.
    Farooq A; Patoary MK; Zhang M; Mussana H; Li M; Naeem MA; Mushtaq M; Farooq A; Liu L
    Int J Biol Macromol; 2020 Jul; 154():1050-1073. PubMed ID: 32201207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications.
    Ludwicka K; Kolodziejczyk M; Gendaszewska-Darmach E; Chrzanowski M; Jedrzejczak-Krzepkowska M; Rytczak P; Bielecki S
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):978-987. PubMed ID: 30261126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose in biomedical and biosensing applications: A review.
    Subhedar A; Bhadauria S; Ahankari S; Kargarzadeh H
    Int J Biol Macromol; 2021 Jan; 166():587-600. PubMed ID: 33130267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Skeletal Muscle Myoblast Culture in Aligned Bacterial Nanocellulose and Commercial Matrices.
    Mastrodimos M; Jain S; Badv M; Shen J; Montazerian H; Meyer CE; Annabi N; Weiss PS
    ACS Appl Mater Interfaces; 2024 Sep; 16(36):47150-47162. PubMed ID: 39206938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of bacterial cellulose and its composites in biomedicine.
    Rajwade JM; Paknikar KM; Kumbhar JV
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2491-511. PubMed ID: 25666681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocellulose-alginate hydrogel for cell encapsulation.
    Park M; Lee D; Hyun J
    Carbohydr Polym; 2015 Feb; 116():223-8. PubMed ID: 25458293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in bacterial cellulose matrices for biotechnological applications.
    Cacicedo ML; Castro MC; Servetas I; Bosnea L; Boura K; Tsafrakidou P; Dima A; Terpou A; Koutinas A; Castro GR
    Bioresour Technol; 2016 Aug; 213():172-180. PubMed ID: 26927233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review.
    He P; Dai L; Wei J; Zhu X; Li J; Chen Z; Ni Y
    Int J Biol Macromol; 2022 Dec; 222(Pt A):830-843. PubMed ID: 36179866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial nanocellulose: Present status, biomedical applications and future perspectives.
    Sharma C; Bhardwaj NK
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109963. PubMed ID: 31499992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered nanocellulose-based hydrogels for smart drug delivery applications.
    Liu S; Qamar SA; Qamar M; Basharat K; Bilal M
    Int J Biol Macromol; 2021 Jun; 181():275-290. PubMed ID: 33781811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.
    de Oliveira Barud HG; da Silva RR; da Silva Barud H; Tercjak A; Gutierrez J; Lustri WR; de Oliveira OB; Ribeiro SJL
    Carbohydr Polym; 2016 Nov; 153():406-420. PubMed ID: 27561512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus.
    Fang J; Kawano S; Tajima K; Kondo T
    Biomacromolecules; 2015 Oct; 16(10):3154-60. PubMed ID: 26360299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocellulose in green food packaging.
    Vilarinho F; Sanches Silva A; Vaz MF; Farinha JP
    Crit Rev Food Sci Nutr; 2018 Jun; 58(9):1526-1537. PubMed ID: 28125279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.