These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 33357876)
1. Biotech nanocellulose: A review on progress in product design and today's state of technical and medical applications. Klemm D; Petzold-Welcke K; Kramer F; Richter T; Raddatz V; Fried W; Nietzsche S; Bellmann T; Fischer D Carbohydr Polym; 2021 Feb; 254():117313. PubMed ID: 33357876 [TBL] [Abstract][Full Text] [Related]
2. Nanocellulose and its Composites for Biomedical Applications. Dumanli AG Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719 [TBL] [Abstract][Full Text] [Related]
3. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548 [TBL] [Abstract][Full Text] [Related]
4. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process. Mohammadkazemi F; Faria M; Cordeiro N Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766 [TBL] [Abstract][Full Text] [Related]
5. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Farooq A; Patoary MK; Zhang M; Mussana H; Li M; Naeem MA; Mushtaq M; Farooq A; Liu L Int J Biol Macromol; 2020 Jul; 154():1050-1073. PubMed ID: 32201207 [TBL] [Abstract][Full Text] [Related]
6. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147 [TBL] [Abstract][Full Text] [Related]
7. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications. Ludwicka K; Kolodziejczyk M; Gendaszewska-Darmach E; Chrzanowski M; Jedrzejczak-Krzepkowska M; Rytczak P; Bielecki S J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):978-987. PubMed ID: 30261126 [TBL] [Abstract][Full Text] [Related]
8. Nanocellulose in biomedical and biosensing applications: A review. Subhedar A; Bhadauria S; Ahankari S; Kargarzadeh H Int J Biol Macromol; 2021 Jan; 166():587-600. PubMed ID: 33130267 [TBL] [Abstract][Full Text] [Related]
9. Human Skeletal Muscle Myoblast Culture in Aligned Bacterial Nanocellulose and Commercial Matrices. Mastrodimos M; Jain S; Badv M; Shen J; Montazerian H; Meyer CE; Annabi N; Weiss PS ACS Appl Mater Interfaces; 2024 Sep; 16(36):47150-47162. PubMed ID: 39206938 [TBL] [Abstract][Full Text] [Related]
10. Applications of bacterial cellulose and its composites in biomedicine. Rajwade JM; Paknikar KM; Kumbhar JV Appl Microbiol Biotechnol; 2015 Mar; 99(6):2491-511. PubMed ID: 25666681 [TBL] [Abstract][Full Text] [Related]
11. Nanocellulose-alginate hydrogel for cell encapsulation. Park M; Lee D; Hyun J Carbohydr Polym; 2015 Feb; 116():223-8. PubMed ID: 25458293 [TBL] [Abstract][Full Text] [Related]
13. Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. He P; Dai L; Wei J; Zhu X; Li J; Chen Z; Ni Y Int J Biol Macromol; 2022 Dec; 222(Pt A):830-843. PubMed ID: 36179866 [TBL] [Abstract][Full Text] [Related]