These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 33357876)
21. Role of nanocellulose in industrial and pharmaceutical sectors - A review. Pradeep HK; Patel DH; Onkarappa HS; Pratiksha CC; Prasanna GD Int J Biol Macromol; 2022 May; 207():1038-1047. PubMed ID: 35364203 [TBL] [Abstract][Full Text] [Related]
22. [Nanocellulose in the food industry and medicine: structure, production and application]. Gmoshinski IV; Shipelin VA; Khotimchenko SA Vopr Pitan; 2022; 91(3):6-20. PubMed ID: 35853186 [TBL] [Abstract][Full Text] [Related]
23. Nanocellulose in food packaging: A review. Ahankari SS; Subhedar AR; Bhadauria SS; Dufresne A Carbohydr Polym; 2021 Mar; 255():117479. PubMed ID: 33436241 [TBL] [Abstract][Full Text] [Related]
24. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. Müller A; Ni Z; Hessler N; Wesarg F; Müller FA; Kralisch D; Fischer D J Pharm Sci; 2013 Feb; 102(2):579-92. PubMed ID: 23192666 [TBL] [Abstract][Full Text] [Related]
25. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Samyn P; Meftahi A; Geravand SA; Heravi MEM; Najarzadeh H; Sabery MSK; Barhoum A Int J Biol Macromol; 2023 Mar; 231():123316. PubMed ID: 36682647 [TBL] [Abstract][Full Text] [Related]
26. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Stanisławska A; Staroszczyk H; Szkodo M Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842 [TBL] [Abstract][Full Text] [Related]
27. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511 [TBL] [Abstract][Full Text] [Related]
28. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922 [TBL] [Abstract][Full Text] [Related]
29. White biotechnology for cellulose manufacturing--the HoLiR concept. Kralisch D; Hessler N; Klemm D; Erdmann R; Schmidt W Biotechnol Bioeng; 2010 Mar; 105(4):740-7. PubMed ID: 19816981 [TBL] [Abstract][Full Text] [Related]
30. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E Kołaczkowska M; Siondalski P; Kowalik MM; Pęksa R; Długa A; Zając W; Dederko P; Kołodziejska I; Malinowska-Pańczyk E; Sinkiewicz I; Staroszczyk H; Śliwińska A; Stanisławska A; Szkodo M; Pałczyńska P; Jabłoński G; Borman A; Wilczek P Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():302-312. PubMed ID: 30678915 [TBL] [Abstract][Full Text] [Related]
31. Bacterial nanocellulose production and application: a 10-year overview. Jozala AF; de Lencastre-Novaes LC; Lopes AM; de Carvalho Santos-Ebinuma V; Mazzola PG; Pessoa A; Grotto D; Gerenutti M; Chaud MV Appl Microbiol Biotechnol; 2016 Mar; 100(5):2063-72. PubMed ID: 26743657 [TBL] [Abstract][Full Text] [Related]
32. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Lee KY; Buldum G; Mantalaris A; Bismarck A Macromol Biosci; 2014 Jan; 14(1):10-32. PubMed ID: 23897676 [TBL] [Abstract][Full Text] [Related]
33. Characterization of nanocellulose and activated carbon nanocomposite films' biosensing properties for smart packaging. Sobhan A; Muthukumarappan K; Cen Z; Wei L Carbohydr Polym; 2019 Dec; 225():115189. PubMed ID: 31521300 [TBL] [Abstract][Full Text] [Related]
34. An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae. Teh MY; Ooi KH; Danny Teo SX; Bin Mansoor ME; Shaun Lim WZ; Tan MH ACS Synth Biol; 2019 Apr; 8(4):708-723. PubMed ID: 30865830 [TBL] [Abstract][Full Text] [Related]
35. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Maleki H; Durães L; García-González CA; Del Gaudio P; Portugal A; Mahmoudi M Adv Colloid Interface Sci; 2016 Oct; 236():1-27. PubMed ID: 27321857 [TBL] [Abstract][Full Text] [Related]
36. "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Kose R; Mitani I; Kasai W; Kondo T Biomacromolecules; 2011 Mar; 12(3):716-20. PubMed ID: 21314117 [TBL] [Abstract][Full Text] [Related]
37. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces. Li Z; Li X; Ren J; Wu B; Luo Q; Liu X; Pei C J Agric Food Chem; 2020 Mar; 68(9):2696-2701. PubMed ID: 32031789 [TBL] [Abstract][Full Text] [Related]
39. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Gullo M; La China S; Falcone PM; Giudici P Appl Microbiol Biotechnol; 2018 Aug; 102(16):6885-6898. PubMed ID: 29926141 [TBL] [Abstract][Full Text] [Related]
40. Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles. Saremi R; Borodinov N; Laradji AM; Sharma S; Luzinov I; Minko S Molecules; 2020 Jul; 25(14):. PubMed ID: 32708592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]